(5 intermediate revisions by 4 users not shown)
Line 1: Line 1:
[[Category:ECE302]]
+
= [[:Category:Problem solving|Practice Problem]]: compute the first order moment of a Gaussian random variable =
[[Category:ECE302Spring2013Boutin]]
+
 
[[Category:problem solving]]
+
[[Category:continuous random variable]]
+
= [[:Category:Problem_solving|Practice Problem]]: compute the zero-th order moment of a Gaussian random variable=
+
 
----
 
----
A random variable X has the following probability density function:
+
 
 +
A random variable X has the following probability density function:  
  
 
<math>  
 
<math>  
 
f_X (x) = \frac{1}{\sqrt{2\pi} 3 } e^{\frac{-(x-3)^2}{18}} .
 
f_X (x) = \frac{1}{\sqrt{2\pi} 3 } e^{\frac{-(x-3)^2}{18}} .
</math>
+
</math>  
  
Compute the moment of order one of that random variable. In other words, compute
+
Compute the moment of order one of that random variable. In other words, compute  
  
<math>E \left( X^1 \right) .</math>
+
<math>E \left( X^1 \right) .</math>  
  
 
----
 
----
==Share your answers below==
+
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
+
== Share your answers below ==
 +
 
 +
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!  
 +
 
 
----
 
----
===Answer 1===
+
 
Write it here.
+
=== Answer 1 ===
===Answer 2===
+
 
Write it here.
+
The moment of n-th order moment is defined as: <math>E[X^{n}]=\int_{-\infty }^{\infty }x^{n}f_{X}(x)dx</math>
===Answer 3===
+
 
Write it here.
+
Therefore,
 +
 
 +
<math>E[X^{1}]=\int_{-\infty }^{\infty }xf_{X}(x)dx=\frac{1}{3\sqrt{2\Pi }}\int_{-\infty }^{\infty }xe^{-\frac{(x-3)^{2}}{18}}dx=\frac{1}{3\sqrt{2\Pi }}9\sqrt{2\Pi }=3</math>
 
----
 
----
[[2013_Spring_ECE_302_Boutin|Back to ECE302 Spring 2013 Prof. Boutin]]
+
===Comment on Answer 1===
 +
<span style="color:blue">I have seen 'E(x^n) is defined as:'</span>
 +
 
 +
<math>{\color{blue} E[X^{n}]=\int_{-\infty }^{\infty }x^{n}f_{X}(x)dx \;\;\; (1)}</math>
 +
 
 +
<span style="color:blue">in a few of the hmwrk 5 answers.  However, I think there's an important distinction between equivalency and definition.  E(x^n) is not defined as (1); it is only E(x) that is defined as</span>
 +
 
 +
<math>{\color{blue} E[X]=\int_{-\infty }^{\infty }xf_{X}(x)dx \;\;\; (2)}</math>
 +
 
 +
<span style="color:blue">E(x^n) happens to equal (1) by way of the more general fact that</span>
 +
 
 +
<math>{\color{blue} E[g(X)]=\int_{-\infty }^{\infty }g(X)f_{X}(x)dx \;\;\; (3)}</math>
 +
 
 +
<span style="color:blue">See pgs 84-85 from Bertsekas and Tsitsiklis to see why. -ag</span>
 +
 
 +
:<span style="color:green">Instructor's comment: You are correct ag, I couldn't have said it better. I appreciate your attention to details. -pm </span>
 +
----
 +
===Another comment on Answer 1===
 +
<span style="color:green">Did you figure out the integral "by hand" or did you just plug it into a symbolic conputation software? You will need to be able to integrate by hand on the test.  -pm </span>
 +
=== Answer 2 ===
 +
 
 +
Write it here.
 +
 
 +
=== Answer 3 ===
 +
 
 +
Write it here.
 +
 
 +
----
 +
 
 +
[[2013 Spring ECE 302 Boutin|Back to ECE302 Spring 2013 Prof. Boutin]]
 +
 
 +
[[ECE302|Back to ECE302]]  
  
[[ECE302|Back to ECE302]]
+
[[Category:ECE302]] [[Category:ECE302Spring2013Boutin]] [[Category:Problem_solving]] [[Category:Continuous_random_variable]]

Latest revision as of 13:00, 25 March 2013

Practice Problem: compute the first order moment of a Gaussian random variable


A random variable X has the following probability density function:

$ f_X (x) = \frac{1}{\sqrt{2\pi} 3 } e^{\frac{-(x-3)^2}{18}} . $

Compute the moment of order one of that random variable. In other words, compute

$ E \left( X^1 \right) . $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

The moment of n-th order moment is defined as: $ E[X^{n}]=\int_{-\infty }^{\infty }x^{n}f_{X}(x)dx $

Therefore,

$ E[X^{1}]=\int_{-\infty }^{\infty }xf_{X}(x)dx=\frac{1}{3\sqrt{2\Pi }}\int_{-\infty }^{\infty }xe^{-\frac{(x-3)^{2}}{18}}dx=\frac{1}{3\sqrt{2\Pi }}9\sqrt{2\Pi }=3 $


Comment on Answer 1

I have seen 'E(x^n) is defined as:'

$ {\color{blue} E[X^{n}]=\int_{-\infty }^{\infty }x^{n}f_{X}(x)dx \;\;\; (1)} $

in a few of the hmwrk 5 answers. However, I think there's an important distinction between equivalency and definition. E(x^n) is not defined as (1); it is only E(x) that is defined as

$ {\color{blue} E[X]=\int_{-\infty }^{\infty }xf_{X}(x)dx \;\;\; (2)} $

E(x^n) happens to equal (1) by way of the more general fact that

$ {\color{blue} E[g(X)]=\int_{-\infty }^{\infty }g(X)f_{X}(x)dx \;\;\; (3)} $

See pgs 84-85 from Bertsekas and Tsitsiklis to see why. -ag

Instructor's comment: You are correct ag, I couldn't have said it better. I appreciate your attention to details. -pm

Another comment on Answer 1

Did you figure out the integral "by hand" or did you just plug it into a symbolic conputation software? You will need to be able to integrate by hand on the test. -pm

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE302 Spring 2013 Prof. Boutin

Back to ECE302

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett