(5 intermediate revisions by 3 users not shown)
Line 3: Line 3:
 
[[Category:problem solving]]
 
[[Category:problem solving]]
 
[[Category:continuous random variable]]
 
[[Category:continuous random variable]]
= [[:Category:Problem_solving|Practice Problem]]: normalizing the probability mass function of a discrete random variable=
+
= [[:Category:Problem_solving|Practice Problem]]: normalizing the probability mass function of a continuous random variable=
 
----
 
----
 
A random variable X has the following probability density function:
 
A random variable X has the following probability density function:
Line 15: Line 15:
 
----
 
----
 
===Answer 1===
 
===Answer 1===
Write it here.
+
By the properties of pdfs we know that:
 +
 
 +
<math>\int\limits_{-\infty}^{+\infty} f_X(x) dx = 1.</math>
 +
 
 +
<math>Let, I = \int\limits_{-\infty}^{+\infty}e^{\frac{-x^2}{2}}dx.</math>
 +
 
 +
By introduction a new term <math> e^{\frac{-y^2}{2}} </math> we know that:
 +
 
 +
<math>I^2 = \int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}e^{\frac{-x^2}{2}}e^{\frac{-y^2}{2}}dxdy = \int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}e^{\frac{-x^2-y^2}{2}}dxdy = \int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}e^{-\frac{1}{2}\left(x^2 + y^2\right)}dxdy.</math>
 +
 
 +
Now, we need to change to polar coordinates.  We know that <math> r^2 = x^2 + y^2, </math> and that the Jacobian for Polar coordinates is <math> r. </math>  By performing the substitution we have:
 +
 
 +
<math> I^2 = \int\limits_{0}^{+\infty}\int\limits_0^{2\pi}re^{-\frac{1}{2}r^2}d{\theta}dr. </math>
 +
 
 +
Now, we just need to evaluate the integral:
 +
 
 +
 
 +
<math> I^2 = \int\limits_{0}^{+\infty}\int\limits_0^{2\pi}re^{-\frac{1}{2}r^2}d{\theta}dr = 2\pi\int\limits_{0}^{+\infty}re^{-\frac{1}{2}r^2}dr = 2\pi\left(-e^{-\frac{1}{2}r^2}\right)\bigg|_{0}^{+\infty} = 2\pi\left(0 + 1\right) = 2\pi.</math>
 +
 
 +
 
 +
Now, we solve for <math>I</math>:
 +
 
 +
<math>I = \sqrt{2\pi}.</math>
 +
 
 +
Returning to the original problem,  we actually want to solve:
 +
 
 +
<math>1 = \int\limits_{-\infty}^{+\infty} f_X(x) dx = \int\limits_{-\infty}^{+\infty}C e^{\frac{-x^2}{2}}dx = C\int\limits_{-\infty}^{+\infty}e^{\frac{-x^2}{2}}dx = C \times I = C \times \sqrt{2\pi}. </math>
 +
 
 +
Now, solving for the constant <math> C: </math>
 +
 
 +
<math> C = \frac{1}{\sqrt{2\pi}}. </math>
 +
*<span style="color:green">Instructor's comments: Good job! You have a good approach, and all your steps are clearly explained. Now I want to challenge the other students: can you write a shorter but equivalent solution? In order words, can you "compactify" the justification? -pm </span>
 
===Answer 2===
 
===Answer 2===
Write it here.
+
<math> f_X (x)</math> is in the form of a PDF of a 1-D gaussian random variable.  The general form for the gaussian random variable's PDF is <math>\frac{1}{\sqrt{2\pi}s}e^{-\frac{(x-m)^2}{2s^2}}</math>; therefore, it can be seen from the problem statement that m is zero and <math>s^2</math> is one.  The value of C is then <math>\frac{1}{\sqrt{2\pi}s}</math>, which is <math>\frac{1}{\sqrt{2\pi}}</math>, since s is either positive or negative one (and only positive one will yield a logical answer).
 
===Answer 3===
 
===Answer 3===
 
Write it here.
 
Write it here.

Latest revision as of 07:11, 25 February 2013

Practice Problem: normalizing the probability mass function of a continuous random variable


A random variable X has the following probability density function:

$ f_X (x) = C e^{\frac{-x^2}{2}} , $

where C is a constant. Find the value of the constant C.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

By the properties of pdfs we know that:

$ \int\limits_{-\infty}^{+\infty} f_X(x) dx = 1. $

$ Let, I = \int\limits_{-\infty}^{+\infty}e^{\frac{-x^2}{2}}dx. $

By introduction a new term $ e^{\frac{-y^2}{2}} $ we know that:

$ I^2 = \int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}e^{\frac{-x^2}{2}}e^{\frac{-y^2}{2}}dxdy = \int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}e^{\frac{-x^2-y^2}{2}}dxdy = \int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}e^{-\frac{1}{2}\left(x^2 + y^2\right)}dxdy. $

Now, we need to change to polar coordinates. We know that $ r^2 = x^2 + y^2, $ and that the Jacobian for Polar coordinates is $ r. $ By performing the substitution we have:

$ I^2 = \int\limits_{0}^{+\infty}\int\limits_0^{2\pi}re^{-\frac{1}{2}r^2}d{\theta}dr. $

Now, we just need to evaluate the integral:


$ I^2 = \int\limits_{0}^{+\infty}\int\limits_0^{2\pi}re^{-\frac{1}{2}r^2}d{\theta}dr = 2\pi\int\limits_{0}^{+\infty}re^{-\frac{1}{2}r^2}dr = 2\pi\left(-e^{-\frac{1}{2}r^2}\right)\bigg|_{0}^{+\infty} = 2\pi\left(0 + 1\right) = 2\pi. $


Now, we solve for $ I $:

$ I = \sqrt{2\pi}. $

Returning to the original problem, we actually want to solve:

$ 1 = \int\limits_{-\infty}^{+\infty} f_X(x) dx = \int\limits_{-\infty}^{+\infty}C e^{\frac{-x^2}{2}}dx = C\int\limits_{-\infty}^{+\infty}e^{\frac{-x^2}{2}}dx = C \times I = C \times \sqrt{2\pi}. $

Now, solving for the constant $ C: $

$ C = \frac{1}{\sqrt{2\pi}}. $

  • Instructor's comments: Good job! You have a good approach, and all your steps are clearly explained. Now I want to challenge the other students: can you write a shorter but equivalent solution? In order words, can you "compactify" the justification? -pm

Answer 2

$ f_X (x) $ is in the form of a PDF of a 1-D gaussian random variable. The general form for the gaussian random variable's PDF is $ \frac{1}{\sqrt{2\pi}s}e^{-\frac{(x-m)^2}{2s^2}} $; therefore, it can be seen from the problem statement that m is zero and $ s^2 $ is one. The value of C is then $ \frac{1}{\sqrt{2\pi}s} $, which is $ \frac{1}{\sqrt{2\pi}} $, since s is either positive or negative one (and only positive one will yield a logical answer).

Answer 3

Write it here.


Back to ECE302 Spring 2013 Prof. Boutin

Back to ECE302

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett