(6 intermediate revisions by 3 users not shown)
Line 2: Line 2:
 
[[Category:ECE302Spring2013Boutin]]
 
[[Category:ECE302Spring2013Boutin]]
 
[[Category:problem solving]]
 
[[Category:problem solving]]
[[Category:discrete random variable]]
+
[[Category:continuous random variable]]
= [[:Category:Problem_solving|Practice Problem]]: normalizing the probability mass function of a discrete random variable=
+
= [[:Category:Problem_solving|Practice Problem]]: normalizing the probability mass function of a continuous random variable=
 
----
 
----
 
A random variable X has the following probability density function:
 
A random variable X has the following probability density function:
Line 15: Line 15:
 
----
 
----
 
===Answer 1===
 
===Answer 1===
Write it here.
+
By the properties of pdfs we know that:
 +
 
 +
<math>\int\limits_{-\infty}^{+\infty} f_X(x) dx = 1.</math>
 +
 
 +
<math>Let, I = \int\limits_{-\infty}^{+\infty}e^{\frac{-x^2}{2}}dx.</math>
 +
 
 +
By introduction a new term <math> e^{\frac{-y^2}{2}} </math> we know that:
 +
 
 +
<math>I^2 = \int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}e^{\frac{-x^2}{2}}e^{\frac{-y^2}{2}}dxdy = \int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}e^{\frac{-x^2-y^2}{2}}dxdy = \int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}e^{-\frac{1}{2}\left(x^2 + y^2\right)}dxdy.</math>
 +
 
 +
Now, we need to change to polar coordinates.  We know that <math> r^2 = x^2 + y^2, </math> and that the Jacobian for Polar coordinates is <math> r. </math>  By performing the substitution we have:
 +
 
 +
<math> I^2 = \int\limits_{0}^{+\infty}\int\limits_0^{2\pi}re^{-\frac{1}{2}r^2}d{\theta}dr. </math>
 +
 
 +
Now, we just need to evaluate the integral:
 +
 
 +
 
 +
<math> I^2 = \int\limits_{0}^{+\infty}\int\limits_0^{2\pi}re^{-\frac{1}{2}r^2}d{\theta}dr = 2\pi\int\limits_{0}^{+\infty}re^{-\frac{1}{2}r^2}dr = 2\pi\left(-e^{-\frac{1}{2}r^2}\right)\bigg|_{0}^{+\infty} = 2\pi\left(0 + 1\right) = 2\pi.</math>
 +
 
 +
 
 +
Now, we solve for <math>I</math>:
 +
 
 +
<math>I = \sqrt{2\pi}.</math>
 +
 
 +
Returning to the original problem,  we actually want to solve:
 +
 
 +
<math>1 = \int\limits_{-\infty}^{+\infty} f_X(x) dx = \int\limits_{-\infty}^{+\infty}C e^{\frac{-x^2}{2}}dx = C\int\limits_{-\infty}^{+\infty}e^{\frac{-x^2}{2}}dx = C \times I = C \times \sqrt{2\pi}. </math>
 +
 
 +
Now, solving for the constant <math> C: </math>
 +
 
 +
<math> C = \frac{1}{\sqrt{2\pi}}. </math>
 +
*<span style="color:green">Instructor's comments: Good job! You have a good approach, and all your steps are clearly explained. Now I want to challenge the other students: can you write a shorter but equivalent solution? In order words, can you "compactify" the justification? -pm </span>
 
===Answer 2===
 
===Answer 2===
Write it here.
+
<math> f_X (x)</math> is in the form of a PDF of a 1-D gaussian random variable.  The general form for the gaussian random variable's PDF is <math>\frac{1}{\sqrt{2\pi}s}e^{-\frac{(x-m)^2}{2s^2}}</math>; therefore, it can be seen from the problem statement that m is zero and <math>s^2</math> is one.  The value of C is then <math>\frac{1}{\sqrt{2\pi}s}</math>, which is <math>\frac{1}{\sqrt{2\pi}}</math>, since s is either positive or negative one (and only positive one will yield a logical answer).
 
===Answer 3===
 
===Answer 3===
 
Write it here.
 
Write it here.

Latest revision as of 07:11, 25 February 2013

Practice Problem: normalizing the probability mass function of a continuous random variable


A random variable X has the following probability density function:

$ f_X (x) = C e^{\frac{-x^2}{2}} , $

where C is a constant. Find the value of the constant C.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

By the properties of pdfs we know that:

$ \int\limits_{-\infty}^{+\infty} f_X(x) dx = 1. $

$ Let, I = \int\limits_{-\infty}^{+\infty}e^{\frac{-x^2}{2}}dx. $

By introduction a new term $ e^{\frac{-y^2}{2}} $ we know that:

$ I^2 = \int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}e^{\frac{-x^2}{2}}e^{\frac{-y^2}{2}}dxdy = \int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}e^{\frac{-x^2-y^2}{2}}dxdy = \int\limits_{-\infty}^{+\infty}\int\limits_{-\infty}^{+\infty}e^{-\frac{1}{2}\left(x^2 + y^2\right)}dxdy. $

Now, we need to change to polar coordinates. We know that $ r^2 = x^2 + y^2, $ and that the Jacobian for Polar coordinates is $ r. $ By performing the substitution we have:

$ I^2 = \int\limits_{0}^{+\infty}\int\limits_0^{2\pi}re^{-\frac{1}{2}r^2}d{\theta}dr. $

Now, we just need to evaluate the integral:


$ I^2 = \int\limits_{0}^{+\infty}\int\limits_0^{2\pi}re^{-\frac{1}{2}r^2}d{\theta}dr = 2\pi\int\limits_{0}^{+\infty}re^{-\frac{1}{2}r^2}dr = 2\pi\left(-e^{-\frac{1}{2}r^2}\right)\bigg|_{0}^{+\infty} = 2\pi\left(0 + 1\right) = 2\pi. $


Now, we solve for $ I $:

$ I = \sqrt{2\pi}. $

Returning to the original problem, we actually want to solve:

$ 1 = \int\limits_{-\infty}^{+\infty} f_X(x) dx = \int\limits_{-\infty}^{+\infty}C e^{\frac{-x^2}{2}}dx = C\int\limits_{-\infty}^{+\infty}e^{\frac{-x^2}{2}}dx = C \times I = C \times \sqrt{2\pi}. $

Now, solving for the constant $ C: $

$ C = \frac{1}{\sqrt{2\pi}}. $

  • Instructor's comments: Good job! You have a good approach, and all your steps are clearly explained. Now I want to challenge the other students: can you write a shorter but equivalent solution? In order words, can you "compactify" the justification? -pm

Answer 2

$ f_X (x) $ is in the form of a PDF of a 1-D gaussian random variable. The general form for the gaussian random variable's PDF is $ \frac{1}{\sqrt{2\pi}s}e^{-\frac{(x-m)^2}{2s^2}} $; therefore, it can be seen from the problem statement that m is zero and $ s^2 $ is one. The value of C is then $ \frac{1}{\sqrt{2\pi}s} $, which is $ \frac{1}{\sqrt{2\pi}} $, since s is either positive or negative one (and only positive one will yield a logical answer).

Answer 3

Write it here.


Back to ECE302 Spring 2013 Prof. Boutin

Back to ECE302

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang