(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Origin of [[Laplace transform|Laplace Transform]]''' [[User:Green26| (alec green)]]
+
'''Origin of [[Laplace transform|Laplace Transform]]'''
  
 
----
 
----
Line 15: Line 15:
 
In case you're not familiar with all the above notation, here's the explicit translation starting starting after the summation term, where each quoted term corresponds to each symbol:  'such that' a(n) 'is an element of' 'the set of real numbers' 'for all' n 'which are elements of' 'the set of natural numbers'.
 
In case you're not familiar with all the above notation, here's the explicit translation starting starting after the summation term, where each quoted term corresponds to each symbol:  'such that' a(n) 'is an element of' 'the set of real numbers' 'for all' n 'which are elements of' 'the set of natural numbers'.
  
Note that <math>a(n)</math> is a function here, and just defines the coefficient of each polynomial term in the power series, since a power series is <math>  = a(0) + a(1)x + a(2)x^{2} + ... + a(n)x^{n} + ... </math>  However, because the power series is a discrete summation, <math>a(n)</math> is only guaranteed to be defined if <math>n</math> is a natural number (non-negative integer), as indicated above.  So for example, <math>a(23)</math> is defined, but not necessarily <math>a(-2)</math>, <math>a(.5)</math>, or <math>a(10.001)</math>.  
+
Note that <math>a(n)</math> is a function here, and just defines the coefficient of each polynomial term in the power series, since a power series is <math>  = a(0) + a(1)x + a(2)x^{2} + ... + a(n)x^{n} + ... </math>  However, because the power series is a discrete summation starting at n=0, <math>a(n)</math> is only guaranteed to be defined if <math>n</math> is a natural number (non-negative integer), as indicated above.  So for example, <math>a(23)</math> is defined, but not necessarily <math>a(-2)</math>, <math>a(.5)</math>, or <math>a(10.001)</math>.  
  
  
Line 22: Line 22:
 
Now we'll make the following conversions:
 
Now we'll make the following conversions:
 
*from discretely defined function <math>a</math> to continuously defined function <math>f</math>
 
*from discretely defined function <math>a</math> to continuously defined function <math>f</math>
*from discrete dependent variable <math>n</math> to continuous dependent variable <math>t</math>
+
*from discrete independent variable <math>n</math> to continuous independent variable <math>t</math>
  
 
to arrive at:
 
to arrive at:

Latest revision as of 14:14, 1 May 2016

Origin of Laplace Transform


In the first 15 minutes of this MIT lecture, Arthur Mattuck delivers a clear illustration of what the Laplace transform really is: a continuous analogue of the discrete power series.

Below I've merely summarized his explanation.


(1) Power series = discrete summation

We start with this power series:

$ A(x) = \sum_{n=0}^{\infty} a(n)x^{n} \ \mid \ a(n) \in \R \ \ \ \forall \ n \in \N $

In case you're not familiar with all the above notation, here's the explicit translation starting starting after the summation term, where each quoted term corresponds to each symbol: 'such that' a(n) 'is an element of' 'the set of real numbers' 'for all' n 'which are elements of' 'the set of natural numbers'.

Note that $ a(n) $ is a function here, and just defines the coefficient of each polynomial term in the power series, since a power series is $ = a(0) + a(1)x + a(2)x^{2} + ... + a(n)x^{n} + ... $ However, because the power series is a discrete summation starting at n=0, $ a(n) $ is only guaranteed to be defined if $ n $ is a natural number (non-negative integer), as indicated above. So for example, $ a(23) $ is defined, but not necessarily $ a(-2) $, $ a(.5) $, or $ a(10.001) $.


(2) Integral = continuous summation

Now we'll make the following conversions:

  • from discretely defined function $ a $ to continuously defined function $ f $
  • from discrete independent variable $ n $ to continuous independent variable $ t $

to arrive at:

$ F(x)=\int_{0}^{\infty} f(t)x^{t} \ dt \ \mid \ f(t) \in \R \ \ \ \forall \ t \in (0,\infty) $

The only difference now is that we sum the contributions of $ f(t)x^{t} $ for all real numbers instead of all natural numbers from 0 to infiniti, and we can likewise expect $ f(t) $ to be defined at all those points.


(3) Define variable $ s $ in terms of $ x $

By setting $ x^{t} $ to the more easily integrable $ e^{ln(x)t} $, and realizing that $ e^{ln(x)} $ only depends on $ x $, we obtain:

$ F(e^{ln(x)}) = F(x)=\int_{0}^{\infty} f(t)e^{ln(x)t} \ dt $

Finally, noting that the integral is only guaranteed to converge if the exponential is to a negative power (which implies that $ ln(x) $ must be $ < 0 $), we arbitrarily set $ s = -ln(x) $ or $ -s = ln(x) $, which leaves us with:

$ F(e^{-s}) = F(s)=\int_{0}^{\infty} f(t)e^{-st} \ dt \ | \ \forall s > 0 $

The integral is not necessarily defined if $ s=0 $ (eg, if $ f(t)=t $). Also, I'm not sure how to deal with the case when $ s $ is undefined (ie $ x<0 $), but Mattuck avoids this case by asserting that $ 0 < x < 1 $.

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn