(New page: = ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS) = = Question 1, August 2011, Part 1 = :[[ECE...)
 
 
(30 intermediate revisions by 2 users not shown)
Line 1: Line 1:
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Communication, Networks, Signal, and Image Processing" (CS)  =
+
[[Category:ECE]]
 +
[[Category:QE]]
 +
[[Category:CNSIP]]
 +
[[Category:problem solving]]
 +
[[Category:image processing]]
  
= [[ECE-QE_CS1-2011|Question 1, August 2011]], Part 1 =
+
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
  
:[[ECE-QE_CS1-2011_solusion-1|Part 1]],[[ECE-QE CS1-2011 solusion-2|2]]]
+
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
  
 +
Question 5: Image Processing
 +
</font size>
 +
 +
August 2011
 +
</center>
 +
----
 +
----
 +
=Part 1 =
 +
Jump to [[ECE-QE_CS5-2011_solusion-1|Part 1]],[[ECE-QE CS5-2011 solusion-2|2]]
 
----
 
----
  
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{1. } \left( \text{25 pts} \right) \text{ Let X, Y, and Z be three jointly distributed random variables with joint pdf} f_{XYZ}\left ( x,y,z \right )= \frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} exp \left [ -\frac{1}{2}\left ( \frac{x-y}{z}\right )^{2} \right ] \cdot 1_{\left[0,\infty \right )}\left(y \right )\cdot1_{\left[1,2 \right]} \left ( z \right) </math></span></font>  
+
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{Consider the following discrete space system with input } x(m,n) \text{ and output } y(m,n).
 +
</math></span></font>  
  
'''<math>\color{blue}\left( \text{a} \right) \text{ Find the joint probability density function } f_{YZ}(y,z).</math>'''<br>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>\color{blue}
 +
y(m,n) = \sum_{k=-\infty}^{\infty}{\sum_{l=-\infty}^{\infty}{x(m-k,n-l)h(k,l)}}.
 +
</math><br>  
  
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 
  
<math> f_{YZ}\left (y,z \right )=\int_{-\infty}^{+\infty}f_{XYZ}\left(x,y,z \right )dx </math>&nbsp;
+
<math>\color{blue}
 +
\text{For parts a) and b) let}
 +
</math><br>
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>\color{blue}
 +
h(m,n)=sinc(mT,nT)
 +
</math><br>
 +
<math>\color{blue}  
 +
\text{where } T\leq1.
 +
</math><br>
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math> =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx\cdot 1_{[0,\infty)}
 
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )</math><br>
 
  
<math>\text{But}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx \text{looks like the Gaussian pdf, so} </math>  
+
<math>\color{blue}
 +
\text{For parts c), d), and e) let}
 +
</math><br>
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>\color{blue}
 +
h(m,n)=sinc\left( \frac{(n+m)T}{\sqrt[]{2}},\frac{(n-m)T}{\sqrt[]{2}} \right)
 +
</math><br>
 +
<math>\color{blue}
 +
\text{where } T\leq1.
 +
</math><br>
  
<math> =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}
+
 
\underset{\sqrt[]{2\pi}z}{\underbrace{\frac{7\sqrt[]{2\pi}z}{7\sqrt[]{2\pi}z}  \int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx}}\cdot 1_{[0,\infty)}
+
 
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )
+
<math>\color{blue}\text{a) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right).</math><br>
 +
 
 +
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 +
<math>\color{green}
 +
\text{Recall should be added:}
 +
</math>
 +
 
 +
<math>\color{green}
 +
f(am,bn) \overset{DTFT}{\Leftrightarrow } \frac{1}{|a||b|}F(\frac{\mu}{|a|},\frac{\nu}{|b|})
 +
</math>
 +
 
 +
<math>\color{green}
 +
sinc(m,n) \overset{DTFT}{\Leftrightarrow } rect(\mu,\nu)
 
</math>
 
</math>
  
 
<math>
 
<math>
=\frac{3z^{2}}{7}e^{-zy}\cdot 1_{[0,\infty)}
+
H(e^{j\mu},e^{j\nu}) = \frac{1}{T^2} rect(\frac{\mu}{T},\frac{\nu}{T})
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )
+
 
</math>
 
</math>
  
Line 34: Line 78:
 
<math>\color{blue}\text{Solution 2:}</math>  
 
<math>\color{blue}\text{Solution 2:}</math>  
  
here put sol.2
+
<math>
 +
sinc(m,n) \rightarrow rect(\mu)rect(\nu)
 +
</math>
 +
 
 +
 
 +
<math>
 +
\Rightarrow sinc(mT,nT) \rightarrow \frac{1}{T^2}rect(\frac{\mu}{T})rect(\frac{\nu}{T})
 +
</math>
 +
 
 +
 
 +
<font face="serif"><span style="font-size: 19px;"><math>
 +
= H(e^{j\mu},e^{j\nu})
 +
</math></span></font>
 +
 
 +
<math>\color{green}
 +
\text{Here, the student uses the Separability property of the sinc and rect functions.}
 +
</math>
 
----
 
----
  
<math>\color{blue}\left( \text{b} \right) \text{Find}
+
<math>\color{blue}\text{b) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |\nu| < 2\pi \text{ when } T = \frac{1}{2}
f_{x}\left( x|y,z\right )
+
 
</math><br>  
 
</math><br>  
  
<math>\color{blue}\text{Solution 1:}</math>  
+
<math>\color{green}
 +
\text{Recall should be added:}
 +
</math>
 +
 
 +
<math>\color{green}
 +
rect(t) = \left\{\begin{matrix}
 +
1, for |t|\leq \frac{1}{2}
 +
\\
 +
0, otherwise
 +
\end{matrix}\right.
 +
</math>
 +
 
 +
 
 +
<math>{\color{green}
 +
\text{Here, the following descriptions should be clarified:}
 +
}</math>
 +
 
 +
<font face="serif"><span style="font-size: 19px;"><math>{\color{green}
 +
\text{Using the separability property for rect function, for } T = \frac{1}{2} { we have:}
 +
}</math></span></font>
 +
 
 +
<font face="serif"><span style="font-size: 19px;"><math>{\color{green}
 +
H(e^{j\mu},e^{j\nu}) = \frac{1}{T^2} rect(\frac{\mu}{T},\frac{\nu}{T})
 +
}</math></span></font>
 +
 
 +
<font face="serif"><span style="font-size: 19px;"><math>{\color{green}
 +
= 4 rect(2\mu)rect(2\nu)
 +
}</math></span></font>
  
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
 
= \frac{f_{XYZ}\left( x,y,z\right )}{f_{YZ}\left(y,z \right )}
 
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
 
</span></font>
 
  
'''<font face="serif"><math>
+
[[Image:QE_11_CS5_1_b.png]]
= \frac{e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}}{\sqrt[]{2\pi}z}
+
</math>&nbsp;&nbsp;</font>'''
+
  
 +
<font face="serif"><span style="font-size: 19px;"><math>{\color{red}
 +
\text{In this sketch it is not mentioned that the gain is } 4.
 +
}</math></span></font>
 
----
 
----
  
 
<math>\color{blue}\text{Solution 2:}</math><br>  
 
<math>\color{blue}\text{Solution 2:}</math><br>  
  
sol2 here
+
<math>
 +
T = \frac{1}{2}, H(e^{j\mu},e^{j\nu}) = 4rect(2\mu)rect(2\nu)
 +
</math>
 +
 
 +
[[Image:QE_11_CS5_1_b_sol2.PNG]]
 +
 
 +
 
 
----
 
----
  
<math>\color{blue}\left( \text{c} \right) \text{Find}  
+
<math>\color{blue}\text{c) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right).</math><br>  
f_{Z}\left( z\right )
+
</math><br>  
+
  
 
<math>\color{blue}\text{Solution 1:}</math>  
 
<math>\color{blue}\text{Solution 1:}</math>  
  
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
+
<math>\color{green}
=\int_{0}^{+\infty}{f_{YZ}\left(y,z \right )dy}
+
\text{Recall should be added:}
 +
</math>
 +
 
 +
<math>\color{green}
 +
f \left ( A \begin{bmatrix}
 +
m
 +
\\
 +
n
 +
\end{bmatrix} \right) \overset{DTFT}{\Leftrightarrow } \frac{1}{|A|^{-1}}F([\mu, \nu] A^{-1})
 +
</math>
 +
 
 +
 
 +
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>\color{green}
 +
\text{ In this case, A}= \begin{bmatrix}
 +
\frac{1}{\sqrt{2}} &\frac{1}{\sqrt{2}} \\  
 +
-\frac{1}{\sqrt{2}} &\frac{1}{\sqrt{2}}
 +
\end{bmatrix} \text{, hence:}
 
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
 
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
 
</span></font>  
 
</span></font>  
  
'''<font face="serif"><math>
+
 
=\frac{3z^{2}}{7}\cdot1_{\left[1,2 \right ]}(z)
+
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
</math>&nbsp;&nbsp;</font>'''
+
H(e^{j\mu},e^{j\nu}) = \frac{1}{T^2} rect \left ( \frac{(\mu + \nu)}{\sqrt{2}T},\frac{(\nu - \mu)}{\sqrt{2}T} \right )
 +
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
 +
</span></font>  
  
 
----
 
----
Line 78: Line 183:
 
<math>\color{blue}\text{Solution 2:}</math><br>  
 
<math>\color{blue}\text{Solution 2:}</math><br>  
  
sol2 here
+
<math>
 +
\left ( \frac{(n + m)T}{\sqrt{2}},\frac{(n - m)T}{\sqrt{2}} \right) = \begin{bmatrix}
 +
\frac{1}{\sqrt{2}} &\frac{1}{\sqrt{2}} \\
 +
-\frac{1}{\sqrt{2}} &\frac{1}{\sqrt{2}}
 +
\end{bmatrix} \cdot \begin{pmatrix}
 +
mT\\
 +
nT
 +
\end{pmatrix} = A \cdot \begin{pmatrix}
 +
mT\\
 +
nT
 +
\end{pmatrix}
 +
</math>
 +
 
 +
<math>
 +
\text{As } |A| = 1, A^{-1} = A^T, sinc \left( A \begin{pmatrix}
 +
mT\\
 +
nT
 +
\end{pmatrix} \right)
 +
 
 +
\overset{\mathcal{F}}{\rightarrow} F \left( A \begin{pmatrix}
 +
\mu\\
 +
\nu
 +
\end{pmatrix} \right)
 +
 
 +
 
 +
</math>
 +
 
 +
<math>
 +
= \frac{1}{T^2} rect \left ( \frac{(\mu + \nu)}{\sqrt{2}T},\frac{(\nu - \mu)}{\sqrt{2}T} \right )
 +
</math>
 +
 
 
----
 
----
  
<math>\color{blue}\left( \text{d} \right) \text{Find}
+
<math>\color{blue}\text{d) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |\nu| < 2\pi \text{ when } T = \frac{1}{2}
f_{Y}\left(y|z \right )
+
 
</math><br>  
 
</math><br>  
  
 
<math>\color{blue}\text{Solution 1:}</math>  
 
<math>\color{blue}\text{Solution 1:}</math>  
  
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
+
<math>\color{green}
=\frac{f_{YZ}\left(y,z \right )}{f_{Z}(z)}</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
+
\text{Recall should be added: Since A is an orthogonal matrix, this transformation is rotationally invariant.}
</span></font>  
+
</math>
  
'''<font face="serif"><math>
+
<font face="serif"><span style="font-size: 19px;"><math>\color{green}
=e^{-zy}z\cdot1_{\left[0,\infty \right )}(y)
+
H(e^{j\mu},e^{j\nu}) = \frac{1}{T^2} rect \left ( \frac{(\mu + \nu)}{\sqrt{2}T},\frac{(\nu - \mu)}{\sqrt{2}T} \right )
</math>&nbsp;&nbsp;</font>'''
+
</math></span></font>
 +
 
 +
<font face="serif"><span style="font-size: 19px;"><math>\color{green}
 +
= 4 rect \left (\sqrt{2} (\mu + \nu),\sqrt{2}(\nu - \mu) \right )
 +
</math></span></font>
 +
 
 +
<font face="serif"><span style="font-size: 19px;"><math>\color{green}
 +
\text{Or}
 +
</math></span></font>
 +
 
 +
<font face="serif"><span style="font-size: 19px;"><math>\color{green}
 +
= 4 rect \left (\sqrt{2} (\mu + \nu) \right) rect \left (\sqrt{2}(\nu - \mu) \right )
 +
</math></span></font>
 +
 
 +
 
 +
[[Image:QE_11_CS5_1_d.PNG]]
 +
 
 +
 
 +
<font face="serif"><span style="font-size: 19px;"><math>{ \color{red}
 +
\text{This sketch is partially correct: The cut-offs should be divided by } 4!
 +
}</math></span></font>
 +
 
 +
<font face="serif"><span style="font-size: 19px;"><math>{ \color{red}
 +
\text{ Also, it should be mentioned that the gain is} 4.
 +
}</math></span></font>
  
 
----
 
----
Line 99: Line 257:
 
<math>\color{blue}\text{Solution 2:}</math><br>  
 
<math>\color{blue}\text{Solution 2:}</math><br>  
  
sol2 here
+
<math>
 +
T = \frac{1}{2}, H(e^{j\mu},e^{j\nu}) = 4rect(\sqrt{2}(\mu + \nu))rect(\sqrt{2}(\nu - \mu))
 +
</math>
 +
 
 +
[[Image:QE_11_CS5_1_d_sol2.PNG]]
 +
 
 
----
 
----
<math>\color{blue}\left( \text{e} \right) \text{Find}  
+
<math>\color{blue}\text{e) Calculate } y(m,n) \text{ when } x(m,n)=1.</math><br>
f_{XY}\left(x,y|z \right )
+
 
</math><br>  
+
  
 
<math>\color{blue}\text{Solution 1:}</math>  
 
<math>\color{blue}\text{Solution 1:}</math>  
  
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>
 
=\frac{f_{XYZ}\left(x,y,z \right )}{f_{Z}(z)}
 
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
 
</span></font>
 
  
'''<font face="serif"><math>
+
<math>
=\frac{e^{-zy}}{\sqrt[]{2\pi}}e^{-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2}}\cdot1_{\left[0,\infty \right )}(y)
+
Y(e^{j\mu},e^{j\nu}) = \delta(e^{j\mu},e^{j\nu}) \cdot H(e^{j\mu},e^{j\nu})
</math>&nbsp;&nbsp;</font>'''
+
</math>
 +
 
 +
<math>
 +
= \frac{1}{T^2} rect (0,0) = 4
 +
</math>
 +
 
 +
<math>
 +
\Rightarrow y(m,n) = 4\delta(m,n)
 +
</math>
  
 
----
 
----
Line 120: Line 286:
 
<math>\color{blue}\text{Solution 2:}</math><br>  
 
<math>\color{blue}\text{Solution 2:}</math><br>  
  
sol2 here
+
<math>
 +
y(m,n) = x(m,n) \cdot H(e^{j0},e^{j0}) = 4
 +
</math>
 +
 
 +
<math>\color{red}
 +
\text{The final answer is correct, but the student has skipped some parts of the derivation and the notations do not sound right.}
 +
</math>
 +
 
 
----
 
----
  
"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011  
+
"Communication, Networks, Signal, and Image Processing" (CS)- Question 5, August 2011  
  
 
Go to  
 
Go to  
  
*Part 1: [[ECE-QE_CS1-2011_solusion-1|solutions and discussions]]  
+
*Part 1: [[ECE-QE_CS5-2011_solusion-1|solutions and discussions]]  
*Part 2: [[ECE-QE CS1-2011 solusion-2|solutions and discussions]]  
+
*Part 2: [[ECE-QE CS5-2011 solusion-2|solutions and discussions]]  
  
 
----
 
----
  
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]
+
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]
 
+
[[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]]
+

Latest revision as of 09:31, 13 September 2013


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 5: Image Processing

August 2011



Part 1

Jump to Part 1,2


 $ \color{blue}\text{Consider the following discrete space system with input } x(m,n) \text{ and output } y(m,n). $

                $ \color{blue} y(m,n) = \sum_{k=-\infty}^{\infty}{\sum_{l=-\infty}^{\infty}{x(m-k,n-l)h(k,l)}}. $


$ \color{blue} \text{For parts a) and b) let} $
                $ \color{blue} h(m,n)=sinc(mT,nT) $
$ \color{blue} \text{where } T\leq1. $


$ \color{blue} \text{For parts c), d), and e) let} $
                $ \color{blue} h(m,n)=sinc\left( \frac{(n+m)T}{\sqrt[]{2}},\frac{(n-m)T}{\sqrt[]{2}} \right) $
$ \color{blue} \text{where } T\leq1. $


$ \color{blue}\text{a) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right). $

$ \color{blue}\text{Solution 1:} $

$ \color{green} \text{Recall should be added:} $

$ \color{green} f(am,bn) \overset{DTFT}{\Leftrightarrow } \frac{1}{|a||b|}F(\frac{\mu}{|a|},\frac{\nu}{|b|}) $

$ \color{green} sinc(m,n) \overset{DTFT}{\Leftrightarrow } rect(\mu,\nu) $

$ H(e^{j\mu},e^{j\nu}) = \frac{1}{T^2} rect(\frac{\mu}{T},\frac{\nu}{T}) $


$ \color{blue}\text{Solution 2:} $

$ sinc(m,n) \rightarrow rect(\mu)rect(\nu) $


$ \Rightarrow sinc(mT,nT) \rightarrow \frac{1}{T^2}rect(\frac{\mu}{T})rect(\frac{\nu}{T}) $


$ = H(e^{j\mu},e^{j\nu}) $

$ \color{green} \text{Here, the student uses the Separability property of the sinc and rect functions.} $


$ \color{blue}\text{b) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |\nu| < 2\pi \text{ when } T = \frac{1}{2} $

$ \color{green} \text{Recall should be added:} $

$ \color{green} rect(t) = \left\{\begin{matrix} 1, for |t|\leq \frac{1}{2} \\ 0, otherwise \end{matrix}\right. $


$ {\color{green} \text{Here, the following descriptions should be clarified:} } $

$ {\color{green} \text{Using the separability property for rect function, for } T = \frac{1}{2} { we have:} } $

$ {\color{green} H(e^{j\mu},e^{j\nu}) = \frac{1}{T^2} rect(\frac{\mu}{T},\frac{\nu}{T}) } $

$ {\color{green} = 4 rect(2\mu)rect(2\nu) } $


QE 11 CS5 1 b.png

$ {\color{red} \text{In this sketch it is not mentioned that the gain is } 4. } $


$ \color{blue}\text{Solution 2:} $

$ T = \frac{1}{2}, H(e^{j\mu},e^{j\nu}) = 4rect(2\mu)rect(2\nu) $

QE 11 CS5 1 b sol2.PNG



$ \color{blue}\text{c) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right). $

$ \color{blue}\text{Solution 1:} $

$ \color{green} \text{Recall should be added:} $

$ \color{green} f \left ( A \begin{bmatrix} m \\ n \end{bmatrix} \right) \overset{DTFT}{\Leftrightarrow } \frac{1}{|A|^{-1}}F([\mu, \nu] A^{-1}) $


$ \color{green} \text{ In this case, A}= \begin{bmatrix} \frac{1}{\sqrt{2}} &\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} &\frac{1}{\sqrt{2}} \end{bmatrix} \text{, hence:} $


$ H(e^{j\mu},e^{j\nu}) = \frac{1}{T^2} rect \left ( \frac{(\mu + \nu)}{\sqrt{2}T},\frac{(\nu - \mu)}{\sqrt{2}T} \right ) $


$ \color{blue}\text{Solution 2:} $

$ \left ( \frac{(n + m)T}{\sqrt{2}},\frac{(n - m)T}{\sqrt{2}} \right) = \begin{bmatrix} \frac{1}{\sqrt{2}} &\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} &\frac{1}{\sqrt{2}} \end{bmatrix} \cdot \begin{pmatrix} mT\\ nT \end{pmatrix} = A \cdot \begin{pmatrix} mT\\ nT \end{pmatrix} $

$ \text{As } |A| = 1, A^{-1} = A^T, sinc \left( A \begin{pmatrix} mT\\ nT \end{pmatrix} \right) \overset{\mathcal{F}}{\rightarrow} F \left( A \begin{pmatrix} \mu\\ \nu \end{pmatrix} \right) $

$ = \frac{1}{T^2} rect \left ( \frac{(\mu + \nu)}{\sqrt{2}T},\frac{(\nu - \mu)}{\sqrt{2}T} \right ) $


$ \color{blue}\text{d) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |\nu| < 2\pi \text{ when } T = \frac{1}{2} $

$ \color{blue}\text{Solution 1:} $

$ \color{green} \text{Recall should be added: Since A is an orthogonal matrix, this transformation is rotationally invariant.} $

$ \color{green} H(e^{j\mu},e^{j\nu}) = \frac{1}{T^2} rect \left ( \frac{(\mu + \nu)}{\sqrt{2}T},\frac{(\nu - \mu)}{\sqrt{2}T} \right ) $

$ \color{green} = 4 rect \left (\sqrt{2} (\mu + \nu),\sqrt{2}(\nu - \mu) \right ) $

$ \color{green} \text{Or} $

$ \color{green} = 4 rect \left (\sqrt{2} (\mu + \nu) \right) rect \left (\sqrt{2}(\nu - \mu) \right ) $


QE 11 CS5 1 d.PNG


$ { \color{red} \text{This sketch is partially correct: The cut-offs should be divided by } 4! } $

$ { \color{red} \text{ Also, it should be mentioned that the gain is} 4. } $


$ \color{blue}\text{Solution 2:} $

$ T = \frac{1}{2}, H(e^{j\mu},e^{j\nu}) = 4rect(\sqrt{2}(\mu + \nu))rect(\sqrt{2}(\nu - \mu)) $

QE 11 CS5 1 d sol2.PNG


$ \color{blue}\text{e) Calculate } y(m,n) \text{ when } x(m,n)=1. $


$ \color{blue}\text{Solution 1:} $


$ Y(e^{j\mu},e^{j\nu}) = \delta(e^{j\mu},e^{j\nu}) \cdot H(e^{j\mu},e^{j\nu}) $

$ = \frac{1}{T^2} rect (0,0) = 4 $

$ \Rightarrow y(m,n) = 4\delta(m,n) $


$ \color{blue}\text{Solution 2:} $

$ y(m,n) = x(m,n) \cdot H(e^{j0},e^{j0}) = 4 $

$ \color{red} \text{The final answer is correct, but the student has skipped some parts of the derivation and the notations do not sound right.} $


"Communication, Networks, Signal, and Image Processing" (CS)- Question 5, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett