(13 intermediate revisions by 3 users not shown)
Line 1: Line 1:
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Communication, Networks, Signal, and Image Processing" (CS)  =
+
[[Category:ECE]]
 +
[[Category:QE]]
 +
[[Category:CNSIP]]
 +
[[Category:problem solving]]
 +
[[Category:random variables]]
 +
[[Category:probability]]
  
= [[ECE-QE_CS1-2011|Question 1, August 2011]], Part 1 =
+
<center>
 +
<font size= 4>
 +
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
 +
</font size>
  
:[[ECE-QE_CS1-2011_solusion-1|Part 1]],[[ECE-QE CS1-2011 solusion-2|2]]]
+
<font size= 4>
 +
Communication, Networking, Signal and Image Processing (CS)
  
----
+
Question 1: Probability and Random Processes
 
+
</font size>
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{1. } \left( \text{25 pts} \right) \text{ Let X, Y, and Z be three jointly distributed random variables with joint pdf} f_{XYZ}\left ( x,y,z \right )= \frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} exp \left [ -\frac{1}{2}\left ( \frac{x-y}{z}\right )^{2} \right ] \cdot 1_{\left[0,\infty \right )}\left(y \right )\cdot1_{\left[1,2 \right]} \left ( z \right) </math></span></font>
+
 
+
'''<math>\color{blue}\left( \text{a} \right) \text{ Find the joint probability density function } f_{YZ}(y,z).</math>'''<br>
+
 
+
===== <math>\color{blue}\text{Solution 1:}</math>  =====
+
 
+
<math> f_{YZ}\left (y,z \right )=\int_{-\infty}^{+\infty}f_{XYZ}\left(x,y,z \right )dx </math>&nbsp;
+
 
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math> =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx\cdot 1_{[0,\infty)}
+
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )</math><br>
+
 
+
<math>\text{But}\int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx \text{looks like the Gaussian pdf, so} </math>
+
 
+
<math> =\frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy}
+
\underset{\sqrt[]{2\pi}z}{\underbrace{\frac{7\sqrt[]{2\pi}z}{7\sqrt[]{2\pi}z}  \int_{-\infty}^{+\infty}exp\left[-\frac{1}{2}\left(\frac{x-y}{z} \right )^{2} \right ]dx}}\cdot 1_{[0,\infty)}
+
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )
+
</math>
+
 
+
<math>
+
=\frac{3z^{2}}{7}e^{-zy}\cdot 1_{[0,\infty)}
+
\left(y \right )\cdot1_{\left [1,2 \right ]}\left(z \right )
+
</math>
+
  
 +
August 2011
 +
</center>
 
----
 
----
 
<math>\color{blue}\text{Solution 2:}</math>
 
 
<math>d\in\Re^{2}, d\neq0 \text{ is a feasible direction at } x^{*}</math>&nbsp;<br>
 
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{ if } \exists \alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0}</math>
 
 
'''<math>\because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix}</math>'''
 
 
<br> <math>\therefore d=
 
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re, d_{2}\geq0</math>
 
 
 
----
 
----
 +
==Question==
 +
'''Part 1. ''' 25 pts
  
<math>\color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?}</math><br>
 
  
<math>\color{blue}\text{Solution 1:}</math>  
+
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{ Let } \mathbf{X}\text{, }\mathbf{Y}\text{, and } \mathbf{Z} \text{ be three jointly distributed random variables with joint pdf } f_{XYZ}\left ( x,y,z \right )= \frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} exp \left [ -\frac{1}{2}\left ( \frac{x-y}{z}\right )^{2} \right ] \cdot 1_{\left[0,\infty \right )}\left(y \right )\cdot1_{\left[1,2 \right]} \left ( z \right) </math></span></font>  
  
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math>\text{Let } f\left(x\right)=x_{1}^{2}-x_{1}+x_{2}+x_{1}x_{2} \text{ , } g_{1}\left(x\right)=-x_{1} \text{ , } g_{2}\left(x\right)=-x_{2}</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;">
+
'''<math>\color{blue}\left( \text{a} \right) \text{Find the joint probability density function } f_{YZ}(y,z).</math>'''<br>  
</span></font>  
+
  
'''<font face="serif"><math>\text{It is equivalent to minimize } f\left(x\right) \text{}</math>&nbsp;&nbsp;</font>'''
+
<math>\color{blue}\left( \text{b} \right) \text{Find }  
 +
f_{x}\left( x|y,z\right ).
 +
</math><br>  
  
'''<font face="serif"></font>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{ subject to } g_{1}(x)\leq0, g_{2}(x)\leq0</math>'''
+
<math>\color{blue}\left( \text{c} \right) \text{Find }  
 +
f_{Z}\left( z\right ).
 +
</math><br>
  
<font color="#ff0000" style="font-size: 17px;">'''<math>\left\{\begin{matrix}
+
<math>\color{blue}\left( \text{d} \right) \text{Find }  
l\left(x,\mu \right) = \nabla f(x)+\mu_{1}\nabla g_{1}(x)+ \mu_{2}\nabla g_{2}(x) \\ =\left( \begin{array}{c} 2x_{1}-1+x_{2} \\ 1+x_{1} \end{array} \right) + \left( \begin{array}{c} -\mu_{1} \\ 0 \end{array} \right) +\left( \begin{array}{c} 0 \\ -\mu_{2} \end{array} \right) =0\\
+
f_{Y}\left(y|z \right ).
-\mu_{1}x_{1}-\mu_{2}x_{2} = 0 \\
+
</math><br>  
x_{1} = \frac{1}{2},x_{2} = 0
+
\end{matrix}\right.</math>'''</font><br><math>\Rightarrow \mu_{1}=0 , \mu_{2}=3/2</math>&nbsp; &nbsp;
+
  
<math>\therefore x^{*} \text{ satisfies FONC}</math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;
+
<math>\color{blue}\left( \text{e} \right) \text{Find }
 +
f_{XY}\left(x,y|z \right ).
 +
</math><br>
  
<math>\color{green} \text{There exist } \mu \text{ which make point } x^{*} \text{ satisfies FONC.}</math>
 
  
<math>\text{SONC: } L(x^{*},\mu^{*}) = \nabla l(x^{*},\mu^{*})=\left( \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right)</math>
+
:'''Click [[ECE-QE_CS1-2011_solusion-1|here]] to view student [[ECE-QE_CS1-2011_solusion-1|answers and discussions]]'''
 +
----
 +
'''Part 2.''' 25 pts
  
<font color="#ff0000">'''<math>T(x^{*},\mu^{*}): \begin{cases} y^{T}\nabla g_{1}(x)=0 \\ y^{T}\nabla g_{2}(x)=0 \end{cases} : \begin{cases} y^{T}\left( \begin{array}{c} -1 \\ 0 \end{array} \right)=0 \\ y^{T}\left( \begin{array}{c} 0 \\-1 \end{array} \right)=0 \end{cases} \Rightarrow y=\left( \begin{array}{c} 0 \\0 \end{array} \right)</math><br>'''</font>
 
  
<math>\color{green} \text {Here not using formal set expression. }</math>&nbsp;&nbsp;<math>\color{red} T\left( x^{* },\mu^{* } \right) \text{ should be } T\left( x^{* } \right)</math>  
+
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue} \text{Show that if a continuous-time Gaussian random process } \mathbf{X}(t) \text{ is wide-sense stationary, it is also strict-sense stationary.}
 +
</math></span></font>  
  
<math>\text{The SONC condition is for all } y\in T \left(x^{*},\mu^{*} \right) , y^{T}L\left(x^{*},\mu^{*} \right)y \geq 0</math>
 
 
<math>y^{T}L\left(x^{*},\mu^{*} \right)y =0 \geq 0 \text{. So } x^{*} \text{satisfies SONC.}</math><br>
 
 
<math>\color{red} \text{For SONC, } T\left( x^{* } \right)= \left \{ y\in\Re^{n}: Dh\left( x^{*} \right)y=0, Dg_{j}\left( x^{*} \right)y=0, j\in J\left( x^{*} \right)  \right \}</math>
 
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\color{red}  J\left(x^{*}\right)= \left \{  j:g_{j}\left(x^{*}\right)=0 \right \}</math>
 
 
<math>\color{red} \text{For SOSC, }  \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y: Dh\left( x^{*} \right)y=0, Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right)  \right \}</math>
 
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i}^{\ast }> 0\right \}</math><br>
 
 
<math>\color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right ) \subset 
 
J\left(x^{*}\right)</math>, &nbsp; &nbsp;&nbsp;<math>\color{red} T\left( x^{* } \right) \subset \tilde{T}\left( x^{* },\mu^{*} \right)</math>
 
  
 +
:'''Click [[ECE-QE_CS1-2011_solusion-2|here]] to view student [[ECE-QE_CS1-2011_solusion-2|answers and discussions]]'''
 
----
 
----
 +
'''Part 3.''' 25 pts
  
<math>\color{blue}\text{Solution 2:}</math><br>
+
Show that the sum of two jointly distributed Gaussian random variables that are not necessarily statistically independent is a Gaussian random variable.
  
<math>\text{The problem is equivalent to  min} f\left(x_{1},x_{2}\right) = x_{1}^{2}-x_{1}+x_{2}+x_{1}x_{2}</math>&nbsp;&nbsp;
+
:'''Click [[ECE-QE_CS1-2011_solusion-3|here]] to view student [[ECE-QE_CS1-2011_solusion-3|answers and discussions]]'''
 
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{subject to  }  x_{1}\leq0, x_{2}\leq0</math>
+
 
+
<math>Df\left ( x \right )=\left ( \nabla f\left ( x \right ) \right )^{T} = \left [ \frac{\partial f}{\partial x_{1}}\left ( x \right ),\frac{\partial f}{\partial x_{2}}\left ( x \right ) \right ]=\left [ 2x_{1}-1+x_{2},1+x_{1} \right ]</math><br>
+
 
+
<math>F\left ( x \right ) =D^{2}f\left ( x \right )=\begin{bmatrix}
+
\frac{\partial^{2} f}{\partial x_{1}^{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}\partial x_{1}}\left ( x \right )\\
+
\frac{\partial^{2} f}{\partial x_{1}\partial x_{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}^{2}}\left ( x \right )
+
\end{bmatrix}=\left [ \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right ]</math>
+
 
+
<math>\text{SONC for local minimizer } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix}</math>
+
 
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>d^{T} \nabla f\left ( x^{*} \right )=0  \cdots \left ( 1 \right )</math>&nbsp; &nbsp; &nbsp;
+
 
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>d^{T} F\left ( x^{*} \right )d\geq 0  \cdots \left ( 2\right )</math><br>
+
 
+
<math>\text{For (1), } \begin{bmatrix} d_{1} & d_{2} \end{bmatrix}\begin{bmatrix} 0\\ \frac{3}{2}\end{bmatrix} =0 \Rightarrow  d_{1}\in\Re, d_{2}=0</math><br>
+
 
+
<math>\text{For (2), } F\left ( x \right ) = \begin{bmatrix} 2 &1 \\ 1 &0\end{bmatrix}>0</math>&nbsp; &nbsp; &nbsp; &nbsp;<math>\color{green}  A=\begin{bmatrix} a &b \\ c &d\end{bmatrix} \text{ is positive definite when } a>0 \text{ and } ac-b^{2}>0</math><br>
+
 
+
<math>\therefore \text{ for all } d\in\Re^{n}, d^{T}F\left ( x^{*} \right )d\geq 0</math>
+
 
+
<font face="serif"><math>\text{The point } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix} \text{ satisfies SONC for local minimizer.}</math><br></font>
+
 
+
----
+
 
----
 
----
<font face="serif"></font><math>\color{blue}\text{Related Problem: For function }</math>
+
'''Part 4.''' 25 pts
  
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>f\left( x_{1},x_{2}  \right) =\frac{1}{3} x_{1}^{3} + \frac{1}{3} x_{2}^{3} -x_{1}x_{2}</math>
 
  
<math>\color{blue} \text{Find point(s) that satisfy FONC and check if they are strict local minimizers.}</math>  
+
Assume that <math>\mathbf{X}(t)</math> is a zero-mean continuous-time Gaussian white noise process with autocorrelation function
  
<math>\color{blue}\text{Solution:}</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>R_{\mathbf{XX}}(t_1,t_2)=\delta(t_1-t_2).
 +
</math>
  
<math>\text{Applying FONC gives } \nabla f\left ( x \right )=\begin{bmatrix}
+
Let <math>\mathbf{Y}(t)</math> be a new random process ontained by passing <math>\mathbf{X}(t)</math> through a linear time-invariant system with impulse response <math>h(t)</math> whose Fourier transform <math>H(\omega)</math> has the ideal low-pass characteristic
x_{1}^{2}-x_{2}\\
+
x_{2}^{2}-x_{1}
+
\end{bmatrix}=0</math>  
+
  
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\Rightarrow x^{\left ( 1 \right )}=\begin{bmatrix}
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>H(\omega) =
0\\
+
\begin{cases}  
0
+
1, & \mbox{if } |\omega|\leq\Omega,\\
\end{bmatrix} \text{ and }x^{\left ( 2 \right )}=\begin{bmatrix}
+
0, & \mbox{elsewhere,}  
1\\
+
\end{cases}
1
+
</math>
\end{bmatrix}</math>  
+
  
<math>\text{The Hessian matrix: } F\left ( x \right )=\begin{bmatrix}
+
where <math>\Omega>0</math>.
2x_{1} & -1\\
+
-1 & 2x_{2}
+
\end{bmatrix}</math>  
+
  
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{The matrix } F\left ( x^{\left ( 1 \right )} \right )=\begin{bmatrix}
+
a) Find the mean of <math>\mathbf{Y}(t)</math>.
0 & -1\\
+
-1 & 0
+
\end{bmatrix} \text{ is indefinite. The point is not a minimizer.}</math>  
+
  
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{The matrix } F\left ( x^{\left ( 2\right )} \right )=\begin{bmatrix}
+
b) Find the autocorrelation function of <math>\mathbf{Y}(t)</math>.
0 & -1\\
+
-1 & 0
+
\end{bmatrix} \text{ is positive definite. }</math>  
+
  
<math>\therefore x^{\left ( 2 \right )}=\begin{bmatrix}
+
c) Find the joint pdf of <math>\mathbf{Y}(t_1)</math> and <math>\mathbf{Y}(t_2)</math> for any two arbitrary sample time <math>t_1</math> and <math>t_2</math>.
1\\
+
1
+
\end{bmatrix} \text{ satisfies SOSC to be a strict local minimizer.}</math>  
+
  
----
+
d) What is the minimum time difference <math>t_1-t_2</math> such that <math>\mathbf{Y}(t_1)</math> and <math>\mathbf{Y}(t_2)</math> are statistically independent?
 
+
Automatic Control (AC)- Question 3, August 2011
+
 
+
Go to
+
 
+
*Part 1: [[ECE-QE_AC3-2011_solusion-1|solutions and discussions]]
+
*Part 2: [[ECE-QE AC3-2011 solusion-2|solutions and discussions]]
+
*Part 3: [[ECE-QE AC3-2011 solusion-3|solutions and discussions]]
+
*Part 4: [[ECE-QE AC3-2011 solusion-4|solutions and discussions]]
+
*Part 5: [[ECE-QE AC3-2011 solusion-5|solutions and discussions]]
+
  
 +
:'''Click [[ECE-QE_CS1-2011_solusion-4|here]] to view student [[ECE-QE_CS1-2011_solusion-4|answers and discussions]]'''
 
----
 
----
 
+
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]]
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]
+
 
+
[[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]]
+

Latest revision as of 15:40, 30 March 2015


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2011



Question

Part 1. 25 pts


 $ \color{blue}\text{ Let } \mathbf{X}\text{, }\mathbf{Y}\text{, and } \mathbf{Z} \text{ be three jointly distributed random variables with joint pdf } f_{XYZ}\left ( x,y,z \right )= \frac{3z^{2}}{7\sqrt[]{2\pi}}e^{-zy} exp \left [ -\frac{1}{2}\left ( \frac{x-y}{z}\right )^{2} \right ] \cdot 1_{\left[0,\infty \right )}\left(y \right )\cdot1_{\left[1,2 \right]} \left ( z \right) $

$ \color{blue}\left( \text{a} \right) \text{Find the joint probability density function } f_{YZ}(y,z). $

$ \color{blue}\left( \text{b} \right) \text{Find } f_{x}\left( x|y,z\right ). $

$ \color{blue}\left( \text{c} \right) \text{Find } f_{Z}\left( z\right ). $

$ \color{blue}\left( \text{d} \right) \text{Find } f_{Y}\left(y|z \right ). $

$ \color{blue}\left( \text{e} \right) \text{Find } f_{XY}\left(x,y|z \right ). $


Click here to view student answers and discussions

Part 2. 25 pts


 $ \color{blue} \text{Show that if a continuous-time Gaussian random process } \mathbf{X}(t) \text{ is wide-sense stationary, it is also strict-sense stationary.} $


Click here to view student answers and discussions

Part 3. 25 pts

Show that the sum of two jointly distributed Gaussian random variables that are not necessarily statistically independent is a Gaussian random variable.

Click here to view student answers and discussions

Part 4. 25 pts


Assume that $ \mathbf{X}(t) $ is a zero-mean continuous-time Gaussian white noise process with autocorrelation function

                $ R_{\mathbf{XX}}(t_1,t_2)=\delta(t_1-t_2). $

Let $ \mathbf{Y}(t) $ be a new random process ontained by passing $ \mathbf{X}(t) $ through a linear time-invariant system with impulse response $ h(t) $ whose Fourier transform $ H(\omega) $ has the ideal low-pass characteristic

               $ H(\omega) = \begin{cases} 1, & \mbox{if } |\omega|\leq\Omega,\\ 0, & \mbox{elsewhere,} \end{cases} $

where $ \Omega>0 $.

a) Find the mean of $ \mathbf{Y}(t) $.

b) Find the autocorrelation function of $ \mathbf{Y}(t) $.

c) Find the joint pdf of $ \mathbf{Y}(t_1) $ and $ \mathbf{Y}(t_2) $ for any two arbitrary sample time $ t_1 $ and $ t_2 $.

d) What is the minimum time difference $ t_1-t_2 $ such that $ \mathbf{Y}(t_1) $ and $ \mathbf{Y}(t_2) $ are statistically independent?

Click here to view student answers and discussions

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang