(11 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
[[Category:ECE]]
 +
[[Category:QE]]
 +
[[Category:CNSIP]]
 +
[[Category:problem solving]]
 +
[[Category:automatic control]]
 +
[[Category:optimization]]
 +
 
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC)  =
 
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC)  =
  
= Question 3, Part 1, August 2011 =
+
= [[ECE-QE_AC3-2011|Question 3, August 2011]], Part 1 =
  
 
:[[ECE-QE_AC3-2011_solusion-1|Part 1]],[[ECE-QE AC3-2011 solusion-2|2]],[[ECE-QE AC3-2011 solusion-3|3]],[[ECE-QE AC3-2011 solusion-4|4]],[[ECE-QE AC3-2011 solusion-5|5]]
 
:[[ECE-QE_AC3-2011_solusion-1|Part 1]],[[ECE-QE AC3-2011 solusion-2|2]],[[ECE-QE AC3-2011 solusion-3|3]],[[ECE-QE AC3-2011 solusion-4|4]],[[ECE-QE AC3-2011 solusion-5|5]]
Line 27: Line 34:
 
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>d^{T} \nabla f\left ( x^{*} \right )\geq0</math>  
 
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>d^{T} \nabla f\left ( x^{*} \right )\geq0</math>  
  
'''FONC Interior Case:'''
+
'''FONC Interior Case:'''  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\nabla f\left ( x^{*} \right )=0</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\nabla f\left ( x^{*} \right )=0</math>  
  
 
'''SONC:&nbsp;'''  
 
'''SONC:&nbsp;'''  
Line 37: Line 44:
 
&nbsp; &nbsp; &nbsp; &nbsp; If <math>d^{T} \nabla f\left ( x^{*} \right )=0</math>&nbsp;, then &nbsp;<math>d^{T} F\left ( x^{*} \right )d\geq 0</math>  
 
&nbsp; &nbsp; &nbsp; &nbsp; If <math>d^{T} \nabla f\left ( x^{*} \right )=0</math>&nbsp;, then &nbsp;<math>d^{T} F\left ( x^{*} \right )d\geq 0</math>  
  
'''SONC Interior Case:&nbsp;'''
+
'''SONC Interior Case:&nbsp;'''  
  
&nbsp; &nbsp; &nbsp; &nbsp; If&nbsp;<math>\nabla f\left ( x^{*} \right )=0</math>&nbsp; , then&nbsp;<math>d^{T} F\left ( x^{*} \right )d\geq 0</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; If&nbsp;<math>\nabla f\left ( x^{*} \right )=0</math>&nbsp; , then&nbsp;<math>d^{T} F\left ( x^{*} \right )d\geq 0</math>  
  
 
----
 
----
Line 47: Line 54:
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
  
<math>\text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0,</math>&nbsp;
+
<math>\text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0,</math>&nbsp;  
  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\left( \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right) + \alpha d \text{ for all } \alpha\in \left[0,\alpha_{0}\right]</math><br>  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\left( \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right) + \alpha d \text{ for all } \alpha\in \left[0,\alpha_{0}\right]</math><br>  
Line 59: Line 66:
 
<math>d\in\Re^{2}, d\neq0 \text{ is a feasible direction at } x^{*}</math>&nbsp;<br>  
 
<math>d\in\Re^{2}, d\neq0 \text{ is a feasible direction at } x^{*}</math>&nbsp;<br>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{ if } \exists \alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0}</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{ if } \exists \alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0}</math>  
  
 
'''<math>\because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix}</math>'''  
 
'''<math>\because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix}</math>'''  
  
 
<br> <math>\therefore d=
 
<br> <math>\therefore d=
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re, d_{2}\geq0</math>
+
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re, d_{2}\geq0</math>  
  
 
----
 
----
Line 75: Line 82:
 
</span></font>  
 
</span></font>  
  
'''<font face="serif"><math>\text{It is equivalent to minimize } f\left(x\right) \text{,  }</math>&nbsp;&nbsp;</font>'''
+
'''<font face="serif"><math>\text{It is equivalent to minimize } f\left(x\right) \text{,  }</math>&nbsp;&nbsp;</font>'''  
  
 
'''<font face="serif"></font>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{  subject to } g_{1}(x)\leq0, g_{2}(x)\leq0</math>'''  
 
'''<font face="serif"></font>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{  subject to } g_{1}(x)\leq0, g_{2}(x)\leq0</math>'''  
Line 85: Line 92:
 
\end{matrix}\right.</math>'''</font><br><math>\Rightarrow \mu_{1}=0 , \mu_{2}=3/2</math>&nbsp; &nbsp;  
 
\end{matrix}\right.</math>'''</font><br><math>\Rightarrow \mu_{1}=0 , \mu_{2}=3/2</math>&nbsp; &nbsp;  
  
<math>\therefore x^{*} \text{ satisfies FONC}</math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;
+
<math>\therefore x^{*} \text{ satisfies FONC}</math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;  
  
<math>\color{green} \text{There exist } \mu \text{ which make point } x^{*} \text{ satisfies FONC.}</math>
+
<math>\color{green} \text{There exist } \mu \text{ which make point } x^{*} \text{ satisfies FONC.}</math>  
  
 
<math>\text{SONC: } L(x^{*},\mu^{*}) = \nabla l(x^{*},\mu^{*})=\left( \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right)</math>  
 
<math>\text{SONC: } L(x^{*},\mu^{*}) = \nabla l(x^{*},\mu^{*})=\left( \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right)</math>  
  
<font color="#ff0000" size="5">'''<math>T(x^{*},\mu^{*}): \begin{cases} y^{T}\nabla g_{1}(x)=0 \\ y^{T}\nabla g_{2}(x)=0 \end{cases} : \begin{cases} y^{T}\left( \begin{array}{c} -1 \\ 0 \end{array} \right)=0 \\ y^{T}\left( \begin{array}{c} 0 \\-1 \end{array} \right)=0 \end{cases} \Rightarrow y=\left( \begin{array}{c} 0 \\0 \end{array} \right)</math><br>'''</font>  
+
<font color="#ff0000">'''<math>T(x^{*},\mu^{*}): \begin{cases} y^{T}\nabla g_{1}(x)=0 \\ y^{T}\nabla g_{2}(x)=0 \end{cases} : \begin{cases} y^{T}\left( \begin{array}{c} -1 \\ 0 \end{array} \right)=0 \\ y^{T}\left( \begin{array}{c} 0 \\-1 \end{array} \right)=0 \end{cases} \Rightarrow y=\left( \begin{array}{c} 0 \\0 \end{array} \right)</math><br>'''</font>  
  
<font color="#ff0000" size="5"</font><math>\color{green} \text {Here did not use formal set expression.} T\left( x^{* },\mu^{* } \right) \text{ here should be } T\left( x^{* } \right)</math>
+
<math>\color{green} \text {Here not using formal set expression. }</math>&nbsp;&nbsp;<math>\color{red} T\left( x^{* },\mu^{* } \right) \text{ should be } T\left( x^{* } \right)</math>  
  
 
<math>\text{The SONC condition is for all } y\in T \left(x^{*},\mu^{*} \right) , y^{T}L\left(x^{*},\mu^{*} \right)y \geq 0</math>  
 
<math>\text{The SONC condition is for all } y\in T \left(x^{*},\mu^{*} \right) , y^{T}L\left(x^{*},\mu^{*} \right)y \geq 0</math>  
  
 
<math>y^{T}L\left(x^{*},\mu^{*} \right)y =0 \geq 0 \text{. So } x^{*} \text{satisfies SONC.}</math><br>  
 
<math>y^{T}L\left(x^{*},\mu^{*} \right)y =0 \geq 0 \text{. So } x^{*} \text{satisfies SONC.}</math><br>  
 +
 +
<math>\color{red} \text{For SONC, } T\left( x^{* } \right)= \left \{ y\in\Re^{n}: Dh\left( x^{*} \right)y=0, Dg_{j}\left( x^{*} \right)y=0, j\in J\left( x^{*} \right)  \right \}</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\color{red}  J\left(x^{*}\right)= \left \{  j:g_{j}\left(x^{*}\right)=0 \right \}</math>
 +
 +
<math>\color{red} \text{For SOSC, }  \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y: Dh\left( x^{*} \right)y=0, Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right)  \right \}</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i}^{\ast }> 0\right \}</math><br>
 +
 +
<math>\color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right ) \subset 
 +
J\left(x^{*}\right)</math>, &nbsp; &nbsp;&nbsp;<math>\color{red} T\left( x^{* } \right) \subset \tilde{T}\left( x^{* },\mu^{*} \right)</math>
  
 
----
 
----
Line 116: Line 134:
 
<math>\text{SONC for local minimizer } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix}</math>  
 
<math>\text{SONC for local minimizer } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix}</math>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>d^{T} \nabla f\left ( x^{*} \right )=0  \cdots \left ( 1 \right )</math>&nbsp; &nbsp; &nbsp;
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>d^{T} \nabla f\left ( x^{*} \right )=0  \cdots \left ( 1 \right )</math>&nbsp; &nbsp; &nbsp;  
  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>d^{T} F\left ( x^{*} \right )d\geq 0  \cdots \left ( 2\right )</math><br>  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>d^{T} F\left ( x^{*} \right )d\geq 0  \cdots \left ( 2\right )</math><br>  
  
<math>\text{For (1), } \begin{bmatrix} d_{1} & d_{2} \end{bmatrix}\begin{bmatrix} 0\\ \frac{3}{2}\end{bmatrix} =0 \Rightarrow d_{2}=0, d_{1}\in\Re</math><br>  
+
<math>\text{For (1), } \begin{bmatrix} d_{1} & d_{2} \end{bmatrix}\begin{bmatrix} 0\\ \frac{3}{2}\end{bmatrix} =0 \Rightarrow d_{1}\in\Re, d_{2}=0</math><br>  
  
 
<math>\text{For (2), } F\left ( x \right ) = \begin{bmatrix} 2 &1 \\ 1 &0\end{bmatrix}>0</math>&nbsp; &nbsp; &nbsp; &nbsp;<math>\color{green}  A=\begin{bmatrix} a &b \\ c &d\end{bmatrix} \text{ is positive definite when } a>0 \text{ and } ac-b^{2}>0</math><br>  
 
<math>\text{For (2), } F\left ( x \right ) = \begin{bmatrix} 2 &1 \\ 1 &0\end{bmatrix}>0</math>&nbsp; &nbsp; &nbsp; &nbsp;<math>\color{green}  A=\begin{bmatrix} a &b \\ c &d\end{bmatrix} \text{ is positive definite when } a>0 \text{ and } ac-b^{2}>0</math><br>  
Line 129: Line 147:
  
 
----
 
----
 +
----
 +
<font face="serif"></font><math>\color{blue}\text{Related Problem: For function }</math>
  
<font face="serif"></font><math>\color{blue}\text{Related Problem:}</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>f\left( x_{1},x_{2}  \right) =\frac{1}{3} x_{1}^{3} + \frac{1}{3} x_{2}^{3} -x_{1}x_{2}</math>  
 +
 
 +
<math>\color{blue} \text{Find point(s) that satisfy FONC and check if they are strict local minimizers.}</math>  
 +
 
 +
<math>\color{blue}\text{Solution:}</math>
 +
 
 +
<math>\text{Applying FONC gives } \nabla f\left ( x \right )=\begin{bmatrix}
 +
x_{1}^{2}-x_{2}\\
 +
x_{2}^{2}-x_{1}
 +
\end{bmatrix}=0</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\Rightarrow x^{\left ( 1 \right )}=\begin{bmatrix}
 +
0\\
 +
0
 +
\end{bmatrix} \text{ and }x^{\left ( 2 \right )}=\begin{bmatrix}
 +
1\\
 +
1
 +
\end{bmatrix}</math>
 +
 
 +
<math>\text{The Hessian matrix: } F\left ( x \right )=\begin{bmatrix}
 +
2x_{1} & -1\\
 +
-1 & 2x_{2}
 +
\end{bmatrix}</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{The matrix } F\left ( x^{\left ( 1 \right )} \right )=\begin{bmatrix}
 +
0 & -1\\
 +
-1 & 0
 +
\end{bmatrix} \text{ is indefinite. The point is not a minimizer.}</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{The matrix } F\left ( x^{\left ( 2\right )} \right )=\begin{bmatrix}
 +
0 & -1\\
 +
-1 & 0
 +
\end{bmatrix} \text{ is positive definite. }</math>
 +
 
 +
<math>\therefore x^{\left ( 2 \right )}=\begin{bmatrix}
 +
1\\
 +
1
 +
\end{bmatrix} \text{ satisfies SOSC to be a strict local minimizer.}</math>  
  
 
----
 
----
Line 146: Line 203:
 
----
 
----
  
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]
+
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]
 
+
[[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]]
+

Latest revision as of 09:09, 13 September 2013


ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)

Question 3, August 2011, Part 1

Part 1,2,3,4,5

 $ \color{blue}\text{1. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, } $

               $ \text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $

               $ \text{subject to } x_{1}\geq0, x_{2}\geq0 $


Definition: Feasible Direction

        $ \text{A vector } d\in\Re^{n}, d\neq0, \text{ is a feasible direction at } x\in\Omega $

        $ \text{if there exists } \alpha_{0}>0 \text{ such that } x+\alpha d\in\Omega \text{ for all } \alpha\in\left[ 0,\alpha_{0}\right] $

FONC:

        If x* is a local minimizer of f over Ω, then for any feasible direction d at x*, we have 

        $ d^{T} \nabla f\left ( x^{*} \right )\geq0 $

FONC Interior Case:

         $ \nabla f\left ( x^{*} \right )=0 $

SONC: 

        Let x* a local minimizer of f and d a feasible direction at x*,

        If $ d^{T} \nabla f\left ( x^{*} \right )=0 $ , then  $ d^{T} F\left ( x^{*} \right )d\geq 0 $

SONC Interior Case: 

        If $ \nabla f\left ( x^{*} \right )=0 $  , then $ d^{T} F\left ( x^{*} \right )d\geq 0 $


$ \color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $

$ \color{blue}\text{Solution 1:} $

$ \text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0, $ 

         $ \left( \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right) + \alpha d \text{ for all } \alpha\in \left[0,\alpha_{0}\right] $

$ \text{As } x_{1}\geq0, x_{2}\geq0, d= \left( \begin{array}{c} x \\ y \end{array} \right)\text{where } x\in\Re, \text{ and } y\geq0. $


$ \color{blue}\text{Solution 2:} $

$ d\in\Re^{2}, d\neq0 \text{ is a feasible direction at } x^{*} $ 

         $ \text{ if } \exists \alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0} $

$ \because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix} $


$ \therefore d= \left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re, d_{2}\geq0 $


$ \color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?} $

$ \color{blue}\text{Solution 1:} $

$ \text{Let } f\left(x\right)=x_{1}^{2}-x_{1}+x_{2}+x_{1}x_{2} \text{ , } g_{1}\left(x\right)=-x_{1} \text{ , } g_{2}\left(x\right)=-x_{2} $

$ \text{It is equivalent to minimize } f\left(x\right) \text{, } $  

                                           $ \text{ subject to } g_{1}(x)\leq0, g_{2}(x)\leq0 $

$ \left\{\begin{matrix} l\left(x,\mu \right) = \nabla f(x)+\mu_{1}\nabla g_{1}(x)+ \mu_{2}\nabla g_{2}(x) \\ =\left( \begin{array}{c} 2x_{1}-1+x_{2} \\ 1+x_{1} \end{array} \right) + \left( \begin{array}{c} -\mu_{1} \\ 0 \end{array} \right) +\left( \begin{array}{c} 0 \\ -\mu_{2} \end{array} \right) =0\\ -\mu_{1}x_{1}-\mu_{2}x_{2} = 0 \\ x_{1} = \frac{1}{2},x_{2} = 0 \end{matrix}\right. $
$ \Rightarrow \mu_{1}=0 , \mu_{2}=3/2 $   

$ \therefore x^{*} \text{ satisfies FONC} $              

$ \color{green} \text{There exist } \mu \text{ which make point } x^{*} \text{ satisfies FONC.} $

$ \text{SONC: } L(x^{*},\mu^{*}) = \nabla l(x^{*},\mu^{*})=\left( \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right) $

$ T(x^{*},\mu^{*}): \begin{cases} y^{T}\nabla g_{1}(x)=0 \\ y^{T}\nabla g_{2}(x)=0 \end{cases} : \begin{cases} y^{T}\left( \begin{array}{c} -1 \\ 0 \end{array} \right)=0 \\ y^{T}\left( \begin{array}{c} 0 \\-1 \end{array} \right)=0 \end{cases} \Rightarrow y=\left( \begin{array}{c} 0 \\0 \end{array} \right) $

$ \color{green} \text {Here not using formal set expression. } $  $ \color{red} T\left( x^{* },\mu^{* } \right) \text{ should be } T\left( x^{* } \right) $

$ \text{The SONC condition is for all } y\in T \left(x^{*},\mu^{*} \right) , y^{T}L\left(x^{*},\mu^{*} \right)y \geq 0 $

$ y^{T}L\left(x^{*},\mu^{*} \right)y =0 \geq 0 \text{. So } x^{*} \text{satisfies SONC.} $

$ \color{red} \text{For SONC, } T\left( x^{* } \right)= \left \{ y\in\Re^{n}: Dh\left( x^{*} \right)y=0, Dg_{j}\left( x^{*} \right)y=0, j\in J\left( x^{*} \right) \right \} $

                           $ \color{red} J\left(x^{*}\right)= \left \{ j:g_{j}\left(x^{*}\right)=0 \right \} $

$ \color{red} \text{For SOSC, } \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y: Dh\left( x^{*} \right)y=0, Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right) \right \} $

                          $ \color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i}^{\ast }> 0\right \} $

$ \color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right ) \subset J\left(x^{*}\right) $,     $ \color{red} T\left( x^{* } \right) \subset \tilde{T}\left( x^{* },\mu^{*} \right) $


$ \color{blue}\text{Solution 2:} $

$ \text{The problem is equivalent to min} f\left(x_{1},x_{2}\right) = x_{1}^{2}-x_{1}+x_{2}+x_{1}x_{2} $  

                                                                      $ \text{subject to } x_{1}\leq0, x_{2}\leq0 $

$ Df\left ( x \right )=\left ( \nabla f\left ( x \right ) \right )^{T} = \left [ \frac{\partial f}{\partial x_{1}}\left ( x \right ),\frac{\partial f}{\partial x_{2}}\left ( x \right ) \right ]=\left [ 2x_{1}-1+x_{2},1+x_{1} \right ] $

$ F\left ( x \right ) =D^{2}f\left ( x \right )=\begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}\partial x_{1}}\left ( x \right )\\ \frac{\partial^{2} f}{\partial x_{1}\partial x_{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}^{2}}\left ( x \right ) \end{bmatrix}=\left [ \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right ] $

$ \text{SONC for local minimizer } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix} $

                  $ d^{T} \nabla f\left ( x^{*} \right )=0 \cdots \left ( 1 \right ) $     

                  $ d^{T} F\left ( x^{*} \right )d\geq 0 \cdots \left ( 2\right ) $

$ \text{For (1), } \begin{bmatrix} d_{1} & d_{2} \end{bmatrix}\begin{bmatrix} 0\\ \frac{3}{2}\end{bmatrix} =0 \Rightarrow d_{1}\in\Re, d_{2}=0 $

$ \text{For (2), } F\left ( x \right ) = \begin{bmatrix} 2 &1 \\ 1 &0\end{bmatrix}>0 $       $ \color{green} A=\begin{bmatrix} a &b \\ c &d\end{bmatrix} \text{ is positive definite when } a>0 \text{ and } ac-b^{2}>0 $

$ \therefore \text{ for all } d\in\Re^{n}, d^{T}F\left ( x^{*} \right )d\geq 0 $

$ \text{The point } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix} \text{ satisfies SONC for local minimizer.} $



$ \color{blue}\text{Related Problem: For function } $

        $ f\left( x_{1},x_{2} \right) =\frac{1}{3} x_{1}^{3} + \frac{1}{3} x_{2}^{3} -x_{1}x_{2} $

$ \color{blue} \text{Find point(s) that satisfy FONC and check if they are strict local minimizers.} $

$ \color{blue}\text{Solution:} $

$ \text{Applying FONC gives } \nabla f\left ( x \right )=\begin{bmatrix} x_{1}^{2}-x_{2}\\ x_{2}^{2}-x_{1} \end{bmatrix}=0 $

        $ \Rightarrow x^{\left ( 1 \right )}=\begin{bmatrix} 0\\ 0 \end{bmatrix} \text{ and }x^{\left ( 2 \right )}=\begin{bmatrix} 1\\ 1 \end{bmatrix} $

$ \text{The Hessian matrix: } F\left ( x \right )=\begin{bmatrix} 2x_{1} & -1\\ -1 & 2x_{2} \end{bmatrix} $

        $ \text{The matrix } F\left ( x^{\left ( 1 \right )} \right )=\begin{bmatrix} 0 & -1\\ -1 & 0 \end{bmatrix} \text{ is indefinite. The point is not a minimizer.} $

        $ \text{The matrix } F\left ( x^{\left ( 2\right )} \right )=\begin{bmatrix} 0 & -1\\ -1 & 0 \end{bmatrix} \text{ is positive definite. } $

$ \therefore x^{\left ( 2 \right )}=\begin{bmatrix} 1\\ 1 \end{bmatrix} \text{ satisfies SOSC to be a strict local minimizer.} $


Automatic Control (AC)- Question 3, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett