(22 intermediate revisions by 2 users not shown)
Line 1: Line 1:
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]]: Automatic Control (AC)- Question 3, August 2011 =
+
[[Category:ECE]]
 +
[[Category:QE]]
 +
[[Category:CNSIP]]
 +
[[Category:problem solving]]
 +
[[Category:automatic control]]
 +
[[Category:optimization]]
 +
 
 +
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC) =
 +
 
 +
= [[ECE-QE_AC3-2011|Question 3, August 2011]], Part 1 =
 +
 
 +
:[[ECE-QE_AC3-2011_solusion-1|Part 1]],[[ECE-QE AC3-2011 solusion-2|2]],[[ECE-QE AC3-2011 solusion-3|3]],[[ECE-QE AC3-2011 solusion-4|4]],[[ECE-QE AC3-2011 solusion-5|5]]
  
 
----
 
----
Line 8: Line 19:
  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{subject to  }  x_{1}\geq0, x_{2}\geq0</math><font color="#ff0000" face="serif" size="4"><br></font>  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{subject to  }  x_{1}\geq0, x_{2}\geq0</math><font color="#ff0000" face="serif" size="4"><br></font>  
 +
 +
----
 +
 +
'''Definition: Feasible Direction'''
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{A vector } d\in\Re^{n}, d\neq0, \text{ is a feasible direction at } x\in\Omega</math><br>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{if there exists } \alpha_{0}>0 \text{ such that } x+\alpha d\in\Omega \text{ for all } \alpha\in\left[ 0,\alpha_{0}\right]</math>
 +
 +
'''FONC:'''
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; If x<span style="font-size: 11px;">*</span>&nbsp;is a local minimizer of f over <span class="texhtml">Ω</span>, then for any feasible direction d at x*, we have&nbsp;<sup></sup><sup></sup>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>d^{T} \nabla f\left ( x^{*} \right )\geq0</math>
 +
 +
'''FONC Interior Case:'''
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\nabla f\left ( x^{*} \right )=0</math>
 +
 +
'''SONC:&nbsp;'''
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; Let x* a local minimizer of f and d a feasible direction at x*,
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; If <math>d^{T} \nabla f\left ( x^{*} \right )=0</math>&nbsp;, then &nbsp;<math>d^{T} F\left ( x^{*} \right )d\geq 0</math>
 +
 +
'''SONC Interior Case:&nbsp;'''
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; If&nbsp;<math>\nabla f\left ( x^{*} \right )=0</math>&nbsp; , then&nbsp;<math>d^{T} F\left ( x^{*} \right )d\geq 0</math>
 +
 +
----
  
 
'''<math>\color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>'''<br>  
 
'''<math>\color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>'''<br>  
Line 13: Line 54:
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
  
<math>\text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0,</math>  
+
<math>\text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0,</math>&nbsp;
  
<math>\left( \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right) + \alpha d \text{ for all } \alpha\in\Omega \left[0,\alpha_{0}\right]</math><br>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\left( \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right) + \alpha d \text{ for all } \alpha\in \left[0,\alpha_{0}\right]</math><br>  
  
 
<math>\text{As } x_{1}\geq0, x_{2}\geq0, d= \left( \begin{array}{c} x \\ y \end{array} \right)\text{where } x\in\Re, \text{ and } y\geq0.</math>  
 
<math>\text{As } x_{1}\geq0, x_{2}\geq0, d= \left( \begin{array}{c} x \\ y \end{array} \right)\text{where } x\in\Re, \text{ and } y\geq0.</math>  
Line 23: Line 64:
 
<math>\color{blue}\text{Solution 2:}</math>  
 
<math>\color{blue}\text{Solution 2:}</math>  
  
<math>d\in\Re_{2}, d\neq0 \text{ is a feasible direction at } x^{*} \text{, if } \exists \alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0}</math>&nbsp;<br>  
+
<math>d\in\Re^{2}, d\neq0 \text{ is a feasible direction at } x^{*}</math>&nbsp;<br>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{ if } \exists \alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0}</math>  
  
 
'''<math>\because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix}</math>'''  
 
'''<math>\because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix}</math>'''  
  
 
<br> <math>\therefore d=
 
<br> <math>\therefore d=
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\geq0</math><br>  
+
\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re, d_{2}\geq0</math>  
  
 
----
 
----
Line 39: Line 82:
 
</span></font>  
 
</span></font>  
  
'''<font face="serif"><math>\text{It is equivalent to minimize } f\left(x\right) \text{,  }</math>&nbsp;&nbsp;</font><math>\text{  subject to } g_{1}(x)\leq0, g_{2}(x)\leq0</math>'''  
+
'''<font face="serif"><math>\text{It is equivalent to minimize } f\left(x\right) \text{,  }</math>&nbsp;&nbsp;</font>'''  
  
<font color="#ff0000" style="font-size: 17px;">'''<math>\text{FONC: } l\left(x,\mu \right) = \nabla f(x)+\mu_{1}\nabla g_{1}(x)+ \mu_{2}\nabla g_{2}(x)=\left( \begin{array}{c} 2x_{1}-1+x_{2} \\ 1+x_{1} \end{array} \right) + \left( \begin{array}{c} -\mu_{1} \\ 0 \end{array} \right) +\left( \begin{array}{c} 0 \\ -\mu_{2} \end{array} \right) =0</math>'''</font><font face="serif"><br></font><math>-\mu_{1}x_{1}-\mu_{2}x_{2} = 0 \text{ and } x_{1} = \frac{1}{2},x_{2} = 0</math><br> <math>\Rightarrow \mu_{1}=0 , \mu_{2}=3/2</math>&nbsp; &nbsp; <math>\therefore x^{*} \text{ satisfies FONC}</math>
+
'''<font face="serif"></font>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{  subject to } g_{1}(x)\leq0, g_{2}(x)\leq0</math>'''  
  
<math>\text{SONC: } L(x^{*},\mu^{*}) = \nabla l(x,\mu)=\left( \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right)</math>  
+
<font color="#ff0000" style="font-size: 17px;">'''<math>\left\{\begin{matrix}
 +
l\left(x,\mu \right) = \nabla f(x)+\mu_{1}\nabla g_{1}(x)+ \mu_{2}\nabla g_{2}(x) \\ =\left( \begin{array}{c} 2x_{1}-1+x_{2} \\ 1+x_{1} \end{array} \right) + \left( \begin{array}{c} -\mu_{1} \\ 0 \end{array} \right) +\left( \begin{array}{c} 0 \\ -\mu_{2} \end{array} \right) =0\\
 +
-\mu_{1}x_{1}-\mu_{2}x_{2} = 0 \\
 +
x_{1} = \frac{1}{2},x_{2} = 0
 +
\end{matrix}\right.</math>'''</font><br><math>\Rightarrow \mu_{1}=0 , \mu_{2}=3/2</math>&nbsp; &nbsp;
  
<math>T(x^{*},\mu^{*}): \begin{cases} y^{T}\nabla g_{1}(x)=0 \\ y^{T}\nabla g_{2}(x)=0 \end{cases} \begin{cases} y^{T}\left( \begin{array}{c} -1 \\ 0 \end{array} \right)=0 \\ y^{T}\left( \begin{array}{c} 0 \\-1 \end{array} \right)=0 \end{cases} \Rightarrow y=\left( \begin{array}{c} 0 \\0 \end{array} \right)</math><br>  
+
<math>\therefore x^{*} \text{ satisfies FONC}</math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;
 +
 
 +
<math>\color{green} \text{There exist } \mu \text{ which make point } x^{*} \text{ satisfies FONC.}</math>
 +
 
 +
<math>\text{SONC: } L(x^{*},\mu^{*}) = \nabla l(x^{*},\mu^{*})=\left( \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right)</math>
 +
 
 +
<font color="#ff0000">'''<math>T(x^{*},\mu^{*}): \begin{cases} y^{T}\nabla g_{1}(x)=0 \\ y^{T}\nabla g_{2}(x)=0 \end{cases} : \begin{cases} y^{T}\left( \begin{array}{c} -1 \\ 0 \end{array} \right)=0 \\ y^{T}\left( \begin{array}{c} 0 \\-1 \end{array} \right)=0 \end{cases} \Rightarrow y=\left( \begin{array}{c} 0 \\0 \end{array} \right)</math><br>'''</font>
 +
 
 +
<math>\color{green} \text {Here not using formal set expression. }</math>&nbsp;&nbsp;<math>\color{red} T\left( x^{* },\mu^{* } \right) \text{ should be } T\left( x^{* } \right)</math>  
  
 
<math>\text{The SONC condition is for all } y\in T \left(x^{*},\mu^{*} \right) , y^{T}L\left(x^{*},\mu^{*} \right)y \geq 0</math>  
 
<math>\text{The SONC condition is for all } y\in T \left(x^{*},\mu^{*} \right) , y^{T}L\left(x^{*},\mu^{*} \right)y \geq 0</math>  
  
 
<math>y^{T}L\left(x^{*},\mu^{*} \right)y =0 \geq 0 \text{. So } x^{*} \text{satisfies SONC.}</math><br>  
 
<math>y^{T}L\left(x^{*},\mu^{*} \right)y =0 \geq 0 \text{. So } x^{*} \text{satisfies SONC.}</math><br>  
 +
 +
<math>\color{red} \text{For SONC, } T\left( x^{* } \right)= \left \{ y\in\Re^{n}: Dh\left( x^{*} \right)y=0, Dg_{j}\left( x^{*} \right)y=0, j\in J\left( x^{*} \right)  \right \}</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\color{red}  J\left(x^{*}\right)= \left \{  j:g_{j}\left(x^{*}\right)=0 \right \}</math>
 +
 +
<math>\color{red} \text{For SOSC, }  \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y: Dh\left( x^{*} \right)y=0, Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right)  \right \}</math>
 +
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i}^{\ast }> 0\right \}</math><br>
 +
 +
<math>\color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right ) \subset 
 +
J\left(x^{*}\right)</math>, &nbsp; &nbsp;&nbsp;<math>\color{red} T\left( x^{* } \right) \subset \tilde{T}\left( x^{* },\mu^{*} \right)</math>
  
 
----
 
----
Line 55: Line 121:
 
<math>\color{blue}\text{Solution 2:}</math><br>  
 
<math>\color{blue}\text{Solution 2:}</math><br>  
  
<math>\text{The problem is equivalent to  min} f\left(x_{1},x{2}\right) = -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2}</math>&nbsp;&nbsp;  
+
<math>\text{The problem is equivalent to  min} f\left(x_{1},x_{2}\right) = x_{1}^{2}-x_{1}+x_{2}+x_{1}x_{2}</math>&nbsp;&nbsp;  
  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{subject to  }  x_{1}\leq0, x_{2}\leq0</math>  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{subject to  }  x_{1}\leq0, x_{2}\leq0</math>  
Line 68: Line 134:
 
<math>\text{SONC for local minimizer } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix}</math>  
 
<math>\text{SONC for local minimizer } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix}</math>  
  
<math>d^{T} \nabla f\left ( x^{*} \right )=0  \cdots \left ( 1 \right )</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>d^{T} \nabla f\left ( x^{*} \right )=0  \cdots \left ( 1 \right )</math>&nbsp; &nbsp; &nbsp;
  
<math>d^{T} F\left ( x^{*} \right )d\geq 0  \cdots \left ( 2\right )</math><br>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <math>d^{T} F\left ( x^{*} \right )d\geq 0  \cdots \left ( 2\right )</math><br>  
  
<math>\text{For (1), } \begin{bmatrix} d_{1} & d_{2} \end{bmatrix}\begin{bmatrix} 0\\ \frac{3}{2}\end{bmatrix} =0 \Rightarrow d_{2}=0, d_{1}\in\Re</math><br>  
+
<math>\text{For (1), } \begin{bmatrix} d_{1} & d_{2} \end{bmatrix}\begin{bmatrix} 0\\ \frac{3}{2}\end{bmatrix} =0 \Rightarrow d_{1}\in\Re, d_{2}=0</math><br>  
  
 
<math>\text{For (2), } F\left ( x \right ) = \begin{bmatrix} 2 &1 \\ 1 &0\end{bmatrix}>0</math>&nbsp; &nbsp; &nbsp; &nbsp;<math>\color{green}  A=\begin{bmatrix} a &b \\ c &d\end{bmatrix} \text{ is positive definite when } a>0 \text{ and } ac-b^{2}>0</math><br>  
 
<math>\text{For (2), } F\left ( x \right ) = \begin{bmatrix} 2 &1 \\ 1 &0\end{bmatrix}>0</math>&nbsp; &nbsp; &nbsp; &nbsp;<math>\color{green}  A=\begin{bmatrix} a &b \\ c &d\end{bmatrix} \text{ is positive definite when } a>0 \text{ and } ac-b^{2}>0</math><br>  
Line 78: Line 144:
 
<math>\therefore \text{ for all } d\in\Re^{n}, d^{T}F\left ( x^{*} \right )d\geq 0</math>  
 
<math>\therefore \text{ for all } d\in\Re^{n}, d^{T}F\left ( x^{*} \right )d\geq 0</math>  
  
<font face="serif"><math>\text{The point} x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix} \text{ satisfies SONC for local minimizer.}</math><br></font>  
+
<font face="serif"><math>\text{The point } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix} \text{ satisfies SONC for local minimizer.}</math><br></font>  
  
 
----
 
----
 +
----
 +
<font face="serif"></font><math>\color{blue}\text{Related Problem: For function }</math>
  
Automatic Control (AC)- Question 3, August 2011<br>Problem 2: https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-2<br>Problem 3: https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-3<br>Problem 4: https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-4<br>Problem 5: https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-5<br>  
+
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>f\left( x_{1},x_{2}  \right) =\frac{1}{3} x_{1}^{3} + \frac{1}{3} x_{2}^{3} -x_{1}x_{2}</math>
 +
 
 +
<math>\color{blue} \text{Find point(s) that satisfy FONC and check if they are strict local minimizers.}</math>
 +
 
 +
<math>\color{blue}\text{Solution:}</math>
 +
 
 +
<math>\text{Applying FONC gives } \nabla f\left ( x \right )=\begin{bmatrix}
 +
x_{1}^{2}-x_{2}\\
 +
x_{2}^{2}-x_{1}
 +
\end{bmatrix}=0</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\Rightarrow x^{\left ( 1 \right )}=\begin{bmatrix}
 +
0\\
 +
0
 +
\end{bmatrix} \text{ and }x^{\left ( 2 \right )}=\begin{bmatrix}
 +
1\\
 +
1
 +
\end{bmatrix}</math>  
 +
 
 +
<math>\text{The Hessian matrix: } F\left ( x \right )=\begin{bmatrix}
 +
2x_{1} & -1\\
 +
-1 & 2x_{2}
 +
\end{bmatrix}</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{The matrix } F\left ( x^{\left ( 1 \right )} \right )=\begin{bmatrix}
 +
0 & -1\\
 +
-1 & 0
 +
\end{bmatrix} \text{ is indefinite. The point is not a minimizer.}</math>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{The matrix } F\left ( x^{\left ( 2\right )} \right )=\begin{bmatrix}
 +
0 & -1\\
 +
-1 & 0
 +
\end{bmatrix} \text{ is positive definite. }</math>
 +
 
 +
<math>\therefore x^{\left ( 2 \right )}=\begin{bmatrix}
 +
1\\
 +
1
 +
\end{bmatrix} \text{ satisfies SOSC to be a strict local minimizer.}</math>  
  
 
----
 
----
  
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]  
+
Automatic Control (AC)- Question 3, August 2011
 +
 
 +
Go to
 +
 
 +
*Part 1: [[ECE-QE_AC3-2011_solusion-1|solutions and discussions]]
 +
*Part 2: [[ECE-QE AC3-2011 solusion-2|solutions and discussions]]
 +
*Part 3: [[ECE-QE AC3-2011 solusion-3|solutions and discussions]]
 +
*Part 4: [[ECE-QE AC3-2011 solusion-4|solutions and discussions]]
 +
*Part 5: [[ECE-QE AC3-2011 solusion-5|solutions and discussions]]
 +
 
 +
----
  
[[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]]
+
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]

Latest revision as of 09:09, 13 September 2013


ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)

Question 3, August 2011, Part 1

Part 1,2,3,4,5

 $ \color{blue}\text{1. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, } $

               $ \text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $

               $ \text{subject to } x_{1}\geq0, x_{2}\geq0 $


Definition: Feasible Direction

        $ \text{A vector } d\in\Re^{n}, d\neq0, \text{ is a feasible direction at } x\in\Omega $

        $ \text{if there exists } \alpha_{0}>0 \text{ such that } x+\alpha d\in\Omega \text{ for all } \alpha\in\left[ 0,\alpha_{0}\right] $

FONC:

        If x* is a local minimizer of f over Ω, then for any feasible direction d at x*, we have 

        $ d^{T} \nabla f\left ( x^{*} \right )\geq0 $

FONC Interior Case:

         $ \nabla f\left ( x^{*} \right )=0 $

SONC: 

        Let x* a local minimizer of f and d a feasible direction at x*,

        If $ d^{T} \nabla f\left ( x^{*} \right )=0 $ , then  $ d^{T} F\left ( x^{*} \right )d\geq 0 $

SONC Interior Case: 

        If $ \nabla f\left ( x^{*} \right )=0 $  , then $ d^{T} F\left ( x^{*} \right )d\geq 0 $


$ \color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $

$ \color{blue}\text{Solution 1:} $

$ \text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0, $ 

         $ \left( \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right) + \alpha d \text{ for all } \alpha\in \left[0,\alpha_{0}\right] $

$ \text{As } x_{1}\geq0, x_{2}\geq0, d= \left( \begin{array}{c} x \\ y \end{array} \right)\text{where } x\in\Re, \text{ and } y\geq0. $


$ \color{blue}\text{Solution 2:} $

$ d\in\Re^{2}, d\neq0 \text{ is a feasible direction at } x^{*} $ 

         $ \text{ if } \exists \alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0} $

$ \because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix} $


$ \therefore d= \left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re, d_{2}\geq0 $


$ \color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?} $

$ \color{blue}\text{Solution 1:} $

$ \text{Let } f\left(x\right)=x_{1}^{2}-x_{1}+x_{2}+x_{1}x_{2} \text{ , } g_{1}\left(x\right)=-x_{1} \text{ , } g_{2}\left(x\right)=-x_{2} $

$ \text{It is equivalent to minimize } f\left(x\right) \text{, } $  

                                           $ \text{ subject to } g_{1}(x)\leq0, g_{2}(x)\leq0 $

$ \left\{\begin{matrix} l\left(x,\mu \right) = \nabla f(x)+\mu_{1}\nabla g_{1}(x)+ \mu_{2}\nabla g_{2}(x) \\ =\left( \begin{array}{c} 2x_{1}-1+x_{2} \\ 1+x_{1} \end{array} \right) + \left( \begin{array}{c} -\mu_{1} \\ 0 \end{array} \right) +\left( \begin{array}{c} 0 \\ -\mu_{2} \end{array} \right) =0\\ -\mu_{1}x_{1}-\mu_{2}x_{2} = 0 \\ x_{1} = \frac{1}{2},x_{2} = 0 \end{matrix}\right. $
$ \Rightarrow \mu_{1}=0 , \mu_{2}=3/2 $   

$ \therefore x^{*} \text{ satisfies FONC} $              

$ \color{green} \text{There exist } \mu \text{ which make point } x^{*} \text{ satisfies FONC.} $

$ \text{SONC: } L(x^{*},\mu^{*}) = \nabla l(x^{*},\mu^{*})=\left( \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right) $

$ T(x^{*},\mu^{*}): \begin{cases} y^{T}\nabla g_{1}(x)=0 \\ y^{T}\nabla g_{2}(x)=0 \end{cases} : \begin{cases} y^{T}\left( \begin{array}{c} -1 \\ 0 \end{array} \right)=0 \\ y^{T}\left( \begin{array}{c} 0 \\-1 \end{array} \right)=0 \end{cases} \Rightarrow y=\left( \begin{array}{c} 0 \\0 \end{array} \right) $

$ \color{green} \text {Here not using formal set expression. } $  $ \color{red} T\left( x^{* },\mu^{* } \right) \text{ should be } T\left( x^{* } \right) $

$ \text{The SONC condition is for all } y\in T \left(x^{*},\mu^{*} \right) , y^{T}L\left(x^{*},\mu^{*} \right)y \geq 0 $

$ y^{T}L\left(x^{*},\mu^{*} \right)y =0 \geq 0 \text{. So } x^{*} \text{satisfies SONC.} $

$ \color{red} \text{For SONC, } T\left( x^{* } \right)= \left \{ y\in\Re^{n}: Dh\left( x^{*} \right)y=0, Dg_{j}\left( x^{*} \right)y=0, j\in J\left( x^{*} \right) \right \} $

                           $ \color{red} J\left(x^{*}\right)= \left \{ j:g_{j}\left(x^{*}\right)=0 \right \} $

$ \color{red} \text{For SOSC, } \tilde{T}\left( x^{* },\mu^{*} \right)= \left \{ y: Dh\left( x^{*} \right)y=0, Dg_{i}\left( x^{*} \right)y=0, i\in \tilde{J}\left( x^{*},\mu^{*} \right) \right \} $

                          $ \color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right )= \left \{ i:g_{i}\left ( x^{\ast } \right ) = 0,\mu_{i}^{\ast }> 0\right \} $

$ \color{red} \tilde{J}\left ( x^{\ast },\mu ^{\ast } \right ) \subset J\left(x^{*}\right) $,     $ \color{red} T\left( x^{* } \right) \subset \tilde{T}\left( x^{* },\mu^{*} \right) $


$ \color{blue}\text{Solution 2:} $

$ \text{The problem is equivalent to min} f\left(x_{1},x_{2}\right) = x_{1}^{2}-x_{1}+x_{2}+x_{1}x_{2} $  

                                                                      $ \text{subject to } x_{1}\leq0, x_{2}\leq0 $

$ Df\left ( x \right )=\left ( \nabla f\left ( x \right ) \right )^{T} = \left [ \frac{\partial f}{\partial x_{1}}\left ( x \right ),\frac{\partial f}{\partial x_{2}}\left ( x \right ) \right ]=\left [ 2x_{1}-1+x_{2},1+x_{1} \right ] $

$ F\left ( x \right ) =D^{2}f\left ( x \right )=\begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}\partial x_{1}}\left ( x \right )\\ \frac{\partial^{2} f}{\partial x_{1}\partial x_{2}}\left ( x \right ) & \frac{\partial^{2} f}{\partial x_{2}^{2}}\left ( x \right ) \end{bmatrix}=\left [ \begin{array}{cc} 2 & 1 \\ 1 & 0 \end{array} \right ] $

$ \text{SONC for local minimizer } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix} $

                  $ d^{T} \nabla f\left ( x^{*} \right )=0 \cdots \left ( 1 \right ) $     

                  $ d^{T} F\left ( x^{*} \right )d\geq 0 \cdots \left ( 2\right ) $

$ \text{For (1), } \begin{bmatrix} d_{1} & d_{2} \end{bmatrix}\begin{bmatrix} 0\\ \frac{3}{2}\end{bmatrix} =0 \Rightarrow d_{1}\in\Re, d_{2}=0 $

$ \text{For (2), } F\left ( x \right ) = \begin{bmatrix} 2 &1 \\ 1 &0\end{bmatrix}>0 $       $ \color{green} A=\begin{bmatrix} a &b \\ c &d\end{bmatrix} \text{ is positive definite when } a>0 \text{ and } ac-b^{2}>0 $

$ \therefore \text{ for all } d\in\Re^{n}, d^{T}F\left ( x^{*} \right )d\geq 0 $

$ \text{The point } x^{*}=\begin{bmatrix} \frac{1}{2}\\0 \end{bmatrix} \text{ satisfies SONC for local minimizer.} $



$ \color{blue}\text{Related Problem: For function } $

        $ f\left( x_{1},x_{2} \right) =\frac{1}{3} x_{1}^{3} + \frac{1}{3} x_{2}^{3} -x_{1}x_{2} $

$ \color{blue} \text{Find point(s) that satisfy FONC and check if they are strict local minimizers.} $

$ \color{blue}\text{Solution:} $

$ \text{Applying FONC gives } \nabla f\left ( x \right )=\begin{bmatrix} x_{1}^{2}-x_{2}\\ x_{2}^{2}-x_{1} \end{bmatrix}=0 $

        $ \Rightarrow x^{\left ( 1 \right )}=\begin{bmatrix} 0\\ 0 \end{bmatrix} \text{ and }x^{\left ( 2 \right )}=\begin{bmatrix} 1\\ 1 \end{bmatrix} $

$ \text{The Hessian matrix: } F\left ( x \right )=\begin{bmatrix} 2x_{1} & -1\\ -1 & 2x_{2} \end{bmatrix} $

        $ \text{The matrix } F\left ( x^{\left ( 1 \right )} \right )=\begin{bmatrix} 0 & -1\\ -1 & 0 \end{bmatrix} \text{ is indefinite. The point is not a minimizer.} $

        $ \text{The matrix } F\left ( x^{\left ( 2\right )} \right )=\begin{bmatrix} 0 & -1\\ -1 & 0 \end{bmatrix} \text{ is positive definite. } $

$ \therefore x^{\left ( 2 \right )}=\begin{bmatrix} 1\\ 1 \end{bmatrix} \text{ satisfies SOSC to be a strict local minimizer.} $


Automatic Control (AC)- Question 3, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood