(New page: Category:ECE Category:QE Category:CNSIP Category:problem solving Category:random variables = ECE Ph.D. Qualifying Exam: COMMUNICATIONS, NE...) |
|||
(4 intermediate revisions by 3 users not shown) | |||
Line 4: | Line 4: | ||
[[Category:problem solving]] | [[Category:problem solving]] | ||
[[Category:random variables]] | [[Category:random variables]] | ||
+ | [[Category:probability]] | ||
− | = [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]] | + | <center> |
+ | <font size= 4> | ||
+ | [[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]] | ||
+ | </font size> | ||
+ | |||
+ | <font size= 4> | ||
+ | Communication, Networking, Signal and Image Processing (CS) | ||
+ | |||
+ | Question 1: Probability and Random Processes | ||
+ | </font size> | ||
+ | |||
+ | August 2004 | ||
+ | </center> | ||
+ | ---- | ||
---- | ---- | ||
==Question== | ==Question== | ||
− | + | '''1. (20 pts.)''' | |
+ | |||
+ | A probability space <math class="inline">\left(\mathcal{S},\mathcal{F},\mathcal{P}\right)</math> has a sample space consisting of all pairs of positive integers: <math class="inline">\mathcal{S}=\left\{ \left(k,m\right):\; k=1,2,\cdots;\; m=1,2,\cdots\right\}</math> . The event space <math class="inline">\mathcal{F}</math> is the power set of <math class="inline">\mathcal{S}</math> , and the probability measure <math class="inline">\mathcal{P}</math> is specified by the pmf <math class="inline">p\left(k,m\right)=p^{2}\left(1-p\right)^{k+m-2},\qquad p\in\left(0,1\right)</math>. | ||
+ | |||
+ | (a) | ||
+ | |||
+ | Find <math class="inline">P\left(\left\{ \left(k,m\right):\; k\geq m\right\} \right)</math> . | ||
+ | |||
+ | (b) | ||
+ | |||
+ | Find <math class="inline">P\left(\left\{ \left(k,m\right):\; k+m=r\right\} \right)</math> , for <math class="inline">r=2,3,\cdots</math> . | ||
+ | |||
+ | '''(c)''' | ||
+ | |||
+ | Find <math class="inline">P\left(\left\{ \left(k,m\right):\; k\text{ is an odd number}\right\} \right)</math> . | ||
+ | |||
+ | :'''Click [[ECE_PhD_QE_CNSIP_2004_Problem1.1|here]] to view student [[ECE_PhD_QE_CNSIP_2004_Problem1.1|answers and discussions]]''' | ||
---- | ---- | ||
− | + | '''2. (20 pts.)''' | |
+ | Let <math class="inline">\mathbf{X}</math> and <math class="inline">\mathbf{Y}</math> be two independent identically distributed exponential random variables having mean <math class="inline">\mu</math> . Let <math class="inline">\mathbf{Z}=\mathbf{X}+\mathbf{Y}</math> . Find <math class="inline">f_{\mathbf{X}}\left(x|\mathbf{Z}=z\right)</math> , the conditional pdf of <math class="inline">\mathbf{X}</math> given the event <math class="inline">\left\{ \mathbf{Z}=z\right\}</math> . | ||
+ | :'''Click [[ECE_PhD_QE_CNSIP_2004_Problem1.2|here]] to view student [[ECE_PhD_QE_CNSIP_2004_Problem1.2|answers and discussions]]''' | ||
---- | ---- | ||
− | == | + | '''3. (25 pts.)''' |
− | Write | + | |
+ | Let <math class="inline">\mathbf{X}_{1},\cdots,\mathbf{X}_{n}</math> be independent identically distributed (i.i.d. ) random variables uniformaly distributed over the interval <math class="inline">\left[0,1\right]</math> . | ||
+ | |||
+ | '''(a)''' | ||
+ | |||
+ | Find the probability density function of <math class="inline">\mathbf{Y}=\max\left\{ \mathbf{X}_{1},\cdots,\mathbf{X}_{n}\right\}</math> . | ||
+ | |||
+ | '''(b)''' | ||
+ | |||
+ | Find the probability density function of <math class="inline">\mathbf{Z}=\min\left\{ \mathbf{X}_{1},\cdots,\mathbf{X}_{n}\right\}</math> . | ||
+ | |||
+ | :'''Click [[ECE_PhD_QE_CNSIP_2004_Problem1.3|here]] to view student [[ECE_PhD_QE_CNSIP_2004_Problem1.3|answers and discussions]]''' | ||
+ | ---- | ||
+ | |||
+ | '''4. (35 pts.)''' | ||
+ | |||
+ | Assume that <math class="inline">\mathbf{X}\left(t\right)</math> is a zero-mean, continuous-time, Gaussian white noise process with autocorrelation function <math class="inline">R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=\frac{N_{0}}{2}\delta\left(t_{1}-t_{2}\right).</math> Let <math class="inline">\mathbf{Y}\left(t\right)</math> be a new random process defined as the output of a linear time-invariant system with impulse response <math class="inline">h\left(t\right)=\frac{1}{T}e^{-t/T}\cdot u\left(t\right),</math> where <math class="inline">u\left(t\right)</math> is the unit step function and <math class="inline">T>0</math> . | ||
+ | |||
+ | '''(a)''' | ||
+ | |||
+ | What is the mean of <math class="inline">\mathbf{Y\left(t\right)}</math> ? | ||
+ | |||
+ | '''(b)''' | ||
+ | |||
+ | What is the autocorrelation function of <math class="inline">\mathbf{Y}\left(t\right)</math> ? | ||
+ | |||
+ | '''(c)''' | ||
+ | |||
+ | Write an expression for the <math class="inline">n</math> -th order characteristic function of <math class="inline">\mathbf{Y}\left(t\right)</math> sampled at time <math class="inline">t_{1},t_{2},\cdots,t_{n}</math> . Simplify as much as possible. | ||
+ | |||
+ | '''(d)''' | ||
+ | |||
+ | Write an expression for the second-order pdf <math class="inline">f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right)</math> of <math class="inline">\mathbf{Y}\left(t\right)</math> . simplify as much as possible. | ||
+ | |||
+ | '''(e)''' | ||
+ | |||
+ | Find the minium mean-square estimate of <math class="inline">\mathbf{Y}\left(t_{2}\right)</math> given that <math class="inline">\mathbf{Y}\left(t_{1}\right)=y_{1}</math> . Simplify your answer as much as possible. | ||
+ | |||
+ | :'''Click [[ECE_PhD_QE_CNSIP_2004_Problem1.4|here]] to view student [[ECE_PhD_QE_CNSIP_2004_Problem1.4|answers and discussions]]''' | ||
---- | ---- | ||
[[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] | [[ECE_PhD_Qualifying_Exams|Back to ECE Qualifying Exams (QE) page]] |
Latest revision as of 00:17, 10 March 2015
Communication, Networking, Signal and Image Processing (CS)
Question 1: Probability and Random Processes
August 2004
Question
1. (20 pts.)
A probability space $ \left(\mathcal{S},\mathcal{F},\mathcal{P}\right) $ has a sample space consisting of all pairs of positive integers: $ \mathcal{S}=\left\{ \left(k,m\right):\; k=1,2,\cdots;\; m=1,2,\cdots\right\} $ . The event space $ \mathcal{F} $ is the power set of $ \mathcal{S} $ , and the probability measure $ \mathcal{P} $ is specified by the pmf $ p\left(k,m\right)=p^{2}\left(1-p\right)^{k+m-2},\qquad p\in\left(0,1\right) $.
(a)
Find $ P\left(\left\{ \left(k,m\right):\; k\geq m\right\} \right) $ .
(b)
Find $ P\left(\left\{ \left(k,m\right):\; k+m=r\right\} \right) $ , for $ r=2,3,\cdots $ .
(c)
Find $ P\left(\left\{ \left(k,m\right):\; k\text{ is an odd number}\right\} \right) $ .
- Click here to view student answers and discussions
2. (20 pts.)
Let $ \mathbf{X} $ and $ \mathbf{Y} $ be two independent identically distributed exponential random variables having mean $ \mu $ . Let $ \mathbf{Z}=\mathbf{X}+\mathbf{Y} $ . Find $ f_{\mathbf{X}}\left(x|\mathbf{Z}=z\right) $ , the conditional pdf of $ \mathbf{X} $ given the event $ \left\{ \mathbf{Z}=z\right\} $ .
- Click here to view student answers and discussions
3. (25 pts.)
Let $ \mathbf{X}_{1},\cdots,\mathbf{X}_{n} $ be independent identically distributed (i.i.d. ) random variables uniformaly distributed over the interval $ \left[0,1\right] $ .
(a)
Find the probability density function of $ \mathbf{Y}=\max\left\{ \mathbf{X}_{1},\cdots,\mathbf{X}_{n}\right\} $ .
(b)
Find the probability density function of $ \mathbf{Z}=\min\left\{ \mathbf{X}_{1},\cdots,\mathbf{X}_{n}\right\} $ .
- Click here to view student answers and discussions
4. (35 pts.)
Assume that $ \mathbf{X}\left(t\right) $ is a zero-mean, continuous-time, Gaussian white noise process with autocorrelation function $ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=\frac{N_{0}}{2}\delta\left(t_{1}-t_{2}\right). $ Let $ \mathbf{Y}\left(t\right) $ be a new random process defined as the output of a linear time-invariant system with impulse response $ h\left(t\right)=\frac{1}{T}e^{-t/T}\cdot u\left(t\right), $ where $ u\left(t\right) $ is the unit step function and $ T>0 $ .
(a)
What is the mean of $ \mathbf{Y\left(t\right)} $ ?
(b)
What is the autocorrelation function of $ \mathbf{Y}\left(t\right) $ ?
(c)
Write an expression for the $ n $ -th order characteristic function of $ \mathbf{Y}\left(t\right) $ sampled at time $ t_{1},t_{2},\cdots,t_{n} $ . Simplify as much as possible.
(d)
Write an expression for the second-order pdf $ f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right) $ of $ \mathbf{Y}\left(t\right) $ . simplify as much as possible.
(e)
Find the minium mean-square estimate of $ \mathbf{Y}\left(t_{2}\right) $ given that $ \mathbf{Y}\left(t_{1}\right)=y_{1} $ . Simplify your answer as much as possible.
- Click here to view student answers and discussions