(3 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
[[Category:problem solving]]
 
[[Category:problem solving]]
 
[[Category:discrete-space Fourier transform]]
 
[[Category:discrete-space Fourier transform]]
= [[:Category:Problem_solving|Practice Problem]] on Discrete-space Fourier transform computation =
+
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 
 +
Topic: Discrete-space Fourier transform computation  
 +
 
 +
</center>
 +
----
 +
==Question==
 
Compute the discrete-space Fourier transform of the following signal:
 
Compute the discrete-space Fourier transform of the following signal:
  
Line 16: Line 24:
 
----
 
----
 
===Answer 1===
 
===Answer 1===
'''trigonometric identities'''
+
:'''trigonometric identities'''
  
:By trigonometric identities(which can be proof by Eular's equations easily):
+
::By trigonometric identities(which can be proof by Eular's equations easily):
:<math>cos(\alpha+\beta) = cos(\alpha)cos(\beta) -  sin(\alpha)sin(\beta)</math>
+
::<math>cos(\alpha+\beta) = cos(\alpha)cos(\beta) -  sin(\alpha)sin(\beta)</math>
  
'''Proof of separability'''
+
:'''Proof of separability'''
  
:<math>
+
::<math>
 
\begin{align}
 
\begin{align}
 
DSFT(f(m) \cdot g(n)) &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m) \cdot g(n) e^{-j(mu + nv)}\\
 
DSFT(f(m) \cdot g(n)) &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m) \cdot g(n) e^{-j(mu + nv)}\\
Line 29: Line 37:
 
&= F(u) \cdot G(v)
 
&= F(u) \cdot G(v)
 
\end{align}</math>
 
\end{align}</math>
:where
+
::where
:<math>F(u) =\sum_{m=-\infty}^{\infty} f(m) e^{-j(mu)} = DTFT(f(m))</math>
+
::<math>F(u) =\sum_{m=-\infty}^{\infty} f(m) e^{-j(mu)} = DTFT(f(m))</math>
:<math>G(v) =\sum_{n=-\infty}^{\infty} g(n) e^{-j(nv)} = DTFT(g(n))</math>
+
::<math>G(v) =\sum_{n=-\infty}^{\infty} g(n) e^{-j(nv)} = DTFT(g(n))</math>
  
'''Proof of linearity'''
+
:'''Proof of linearity'''
  
:<math>
+
::<math>
 
\begin{align}
 
\begin{align}
 
DSFT(f(m,n) + g(m,n)) &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} [f(m,n) + g(m,n)] e^{-j(mu + nv)}\\
 
DSFT(f(m,n) + g(m,n)) &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} [f(m,n) + g(m,n)] e^{-j(mu + nv)}\\
Line 41: Line 49:
 
&= F(u,v) + G(u,v)  
 
&= F(u,v) + G(u,v)  
 
\end{align}</math>
 
\end{align}</math>
:where
+
::where
:<math>F(u,v)  =\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m,n) e^{-j(mu + nv)} = DSFT(f(m,n))</math>
+
::<math>F(u,v)  =\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m,n) e^{-j(mu + nv)} = DSFT(f(m,n))</math>
:<math>G(u,v)  =\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} g(m,n) e^{-j(mu + nv)} = DSFT(g(m,n))</math>
+
::<math>G(u,v)  =\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} g(m,n) e^{-j(mu + nv)} = DSFT(g(m,n))</math>
 
+
'''DTFT:''' By computing DTFT or looking it up in the table, one can find
+
:<math>DTFT(cos(w_0n))=\pi[ \frac{}{}\delta(w-w_0)+\delta(w+w_0) ]</math>
+
:<math>DTFT(sin(w_0n))=\frac{\pi}{j}[ \delta(w-w_0)-\delta(w+w_0) ]</math>
+
  
with all these tools we found, one can easily show the following:
+
:'''DTFT:''' By computing DTFT or looking it up in the table, one can find
 +
::<math>DTFT(cos(w_0n))=\pi[ \frac{}{}\delta(w-w_0)+\delta(w+w_0) ]</math>
 +
::<math>DTFT(sin(w_0n))=\frac{\pi}{j}[ \delta(w-w_0)-\delta(w+w_0) ]</math>
 +
:::<span style="color:green"> Instructor's comment: Would you know how to "compute" these two Fourier transforms if asked? Recall that one cannot use the summation formula to compute the DTFT of a function whose amplitude does not decrease as t approached plus/minus infinity. -pm </span>
 +
:with all these tools we found, one can easily show the following:
  
:Let  
+
::Let  
:<math>\alpha = \frac{2\pi}{500}</math>
+
::<math>\alpha = \frac{2\pi}{500}</math>
:<math>\beta = \frac{2\pi}{200}</math>
+
::<math>\beta = \frac{2\pi}{200}</math>
  
:<math>
+
::<math>
 
\begin{align}
 
\begin{align}
 
DSFT&(\cos \left( 2 \pi  \left( \frac{m}{500}+ \frac{n}{200} \right) \right))\\
 
DSFT&(\cos \left( 2 \pi  \left( \frac{m}{500}+ \frac{n}{200} \right) \right))\\
Line 68: Line 76:
 
\end{align}</math>
 
\end{align}</math>
  
:where u and v repeats in every square with 2pi length.
+
::where u and v repeats in every square with 2pi length.
  
 +
--[[User:Xiao1|Xiao1]] 23:03, 19 November 2011 (UTC)
  
 +
:<span style="color:green"> Instructor's comment: This is a very well intentioned answer, with proofs for almost everything that is being used. But it is a bit long? Can somebody propose a different, more straightforward approach? -pm </span>
 
===Answer 2===
 
===Answer 2===
 
Write it here.
 
Write it here.
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]

Latest revision as of 11:59, 26 November 2013

Practice Question on "Digital Signal Processing"

Topic: Discrete-space Fourier transform computation


Question

Compute the discrete-space Fourier transform of the following signal:

$ f[m,n]= \cos \left( 2 \pi \left( \frac{m}{500}+ \frac{n}{200} \right) \right) $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

trigonometric identities
By trigonometric identities(which can be proof by Eular's equations easily):
$ cos(\alpha+\beta) = cos(\alpha)cos(\beta) - sin(\alpha)sin(\beta) $
Proof of separability
$ \begin{align} DSFT(f(m) \cdot g(n)) &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m) \cdot g(n) e^{-j(mu + nv)}\\ &= \sum_{m=-\infty}^{\infty} f(m) e^{-j(mu)} \sum_{n=-\infty}^{\infty} g(n) e^{-j(nv)}\\ &= F(u) \cdot G(v) \end{align} $
where
$ F(u) =\sum_{m=-\infty}^{\infty} f(m) e^{-j(mu)} = DTFT(f(m)) $
$ G(v) =\sum_{n=-\infty}^{\infty} g(n) e^{-j(nv)} = DTFT(g(n)) $
Proof of linearity
$ \begin{align} DSFT(f(m,n) + g(m,n)) &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} [f(m,n) + g(m,n)] e^{-j(mu + nv)}\\ &= \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m,n) e^{-j(mu + nv)} + \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} g(m,n) e^{-j(mu + nv)}\\ &= F(u,v) + G(u,v) \end{align} $
where
$ F(u,v) =\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} f(m,n) e^{-j(mu + nv)} = DSFT(f(m,n)) $
$ G(u,v) =\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} g(m,n) e^{-j(mu + nv)} = DSFT(g(m,n)) $
DTFT: By computing DTFT or looking it up in the table, one can find
$ DTFT(cos(w_0n))=\pi[ \frac{}{}\delta(w-w_0)+\delta(w+w_0) ] $
$ DTFT(sin(w_0n))=\frac{\pi}{j}[ \delta(w-w_0)-\delta(w+w_0) ] $
Instructor's comment: Would you know how to "compute" these two Fourier transforms if asked? Recall that one cannot use the summation formula to compute the DTFT of a function whose amplitude does not decrease as t approached plus/minus infinity. -pm
with all these tools we found, one can easily show the following:
Let
$ \alpha = \frac{2\pi}{500} $
$ \beta = \frac{2\pi}{200} $
$ \begin{align} DSFT&(\cos \left( 2 \pi \left( \frac{m}{500}+ \frac{n}{200} \right) \right))\\ &= DSFT[\cos \left( \alpha m + \beta n \right)] \\ &= DSFT[\cos(\alpha m)\cos(\beta n) - \sin(\alpha m)\sin(\beta n)]\\ &= DSFT[\cos(\alpha m)\cos(\beta n)] - DSFT[\sin(\alpha m)\sin(\beta n)]\\ &= DSFT[\cos(\alpha m)] \cdot DSFT[\cos(\beta n)] - DSFT[\sin(\alpha m)] \cdot DSFT[\sin(\beta n)]\\ &= \pi[ \delta(u-\alpha)+\delta(u+\alpha) ]\cdot\pi[ \delta(v-\beta)+\delta(v+\beta) ] + \frac{\pi}{j}[ \frac{}{}\delta(u-\alpha)-\delta(u+\alpha) ]\cdot\frac{\pi}{j}[ \frac{}{}\delta(v-\beta)-\delta(v+\beta) ]\\ &= \pi^2\{[ \delta(u-\alpha)+\delta(u+\alpha) ]\cdot[ \delta(v-\beta)+\delta(v+\beta) ] - [\delta(u-\alpha)-\delta(u+\alpha) ]\cdot[ \delta(v-\beta)-\delta(v+\beta) ]\}\\ &= 2\pi^2\{\delta(u-\alpha)\delta(v+\beta) + \delta(u+\alpha)\cdot\delta(v-\beta)\}\\ &= 2\pi^2\{\delta(u-\alpha,v+\beta) + \delta(u+\alpha,v-\beta)\}\\ \end{align} $
where u and v repeats in every square with 2pi length.

--Xiao1 23:03, 19 November 2011 (UTC)

Instructor's comment: This is a very well intentioned answer, with proofs for almost everything that is being used. But it is a bit long? Can somebody propose a different, more straightforward approach? -pm

Answer 2

Write it here.


Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009