(5 intermediate revisions by 3 users not shown)
Line 4: Line 4:
 
[[Category:continuous-space Fourier transform]]
 
[[Category:continuous-space Fourier transform]]
  
= Continuous-space Fourier transform of a complex exponential ([[:Category:Problem_solving|Practice Problem]])=
+
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 
 +
Topic: Continuous-space Fourier transform of a complex exponential
 +
 
 +
</center>
 +
----
 +
==Question==
 
What is the Continuous-space Fourier transform (CSFT) of <math>f(x,y)= e^{j \pi (ax +by) }</math>?  
 
What is the Continuous-space Fourier transform (CSFT) of <math>f(x,y)= e^{j \pi (ax +by) }</math>?  
  
Line 15: Line 23:
 
===Answer 1===
 
===Answer 1===
 
<math> x[n] = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{j \pi (ax +by) }e^{-2j \pi (ux +vy) }dxdy
 
<math> x[n] = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{j \pi (ax +by) }e^{-2j \pi (ux +vy) }dxdy
</math>
+
</math> <span style="color:red">Instructor's comment: Are you sure you mean x[n] on the left? -pm </span>
  
 
<math> = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{j \pi x(a-2u) }e^{j \pi y(b - 2v) }dxdy
 
<math> = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{j \pi x(a-2u) }e^{j \pi y(b - 2v) }dxdy
Line 27: Line 35:
  
 
</math>
 
</math>
 +
 +
:<span style="color:red">Instructor's comment: Please, please, please, do not try to integrate functions that are not integrable. This approach does not work. -pm </span>
 
===Answer 2===
 
===Answer 2===
Claim that <math>CSFT  \{ e^{j \pi (ax +by) }\} = \delta(u-a)\delta(v-b)</math>
+
Claim that <math>CSFT  \{ e^{j \pi (ax +by) }\} = \delta(u-a,v-b) =\delta(u-a)\delta(v-b)</math>
  
 
Proof:
 
Proof:
Line 36: Line 46:
 
<math>=\int_{-\infty}^{\infty}\delta(u-a)e^{2j \pi (ux) }du      \int_{-\infty}^{\infty}\delta(v-b)e^{2j \pi (vy) }dv = e^{j \pi (ax)} e^{j \pi (by)} = e^{j \pi (ax +by)}</math>
 
<math>=\int_{-\infty}^{\infty}\delta(u-a)e^{2j \pi (ux) }du      \int_{-\infty}^{\infty}\delta(v-b)e^{2j \pi (vy) }dv = e^{j \pi (ax)} e^{j \pi (by)} = e^{j \pi (ax +by)}</math>
  
Another way is to show by "separality", since  
+
:<span style="color:green">Instructor's comment: Pretty good! -pm </span>
 +
Another way is to show by separality, since  
  
 
<math>f(x,y)=g(x)h(y),g(x) = e^{j \pi (ax)},h(y) =  e^{j \pi (by) } </math>
 
<math>f(x,y)=g(x)h(y),g(x) = e^{j \pi (ax)},h(y) =  e^{j \pi (by) } </math>
Line 49: Line 60:
  
 
--[[User:Xiao1|Xiao1]] 23:12, 12 November 2011 (UTC)
 
--[[User:Xiao1|Xiao1]] 23:12, 12 November 2011 (UTC)
 +
:<span style="color:red">Instructor's comment: On the exam, you could use the second approach if you were given a table of continuous-time fourier transform in which the Fourier transform of an exponential is given. Otherwise, you would need to justify this Fourier transform pair.  -pm </span>
  
 
===Answer 3===
 
===Answer 3===
Write it here.
+
 
 +
<math> F(u,v) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{j \pi (ax +by) }e^{-2j \pi (ux +vy) }dxdy=\int_{-\infty}^{\infty}e^{j \pi (ax)} e^{-j2 \pi u x}dx \int_{-\infty}^{\infty}e^{j \pi (by)} e^{-j2 \pi v y}dy=\delta(u-a/2) \delta(v-b/2)
 +
</math>
 +
 
 +
:<span style="color:red">Instructor's comment: How do you justify the last equality? (For example, how do you know the answer is not 7 times what you wrote, or 42 times what you wrote (which both give you infinity and zero for the same values of u and v as the answer you give.) It seems like you just "plugged in" the answer.  -pm </span>
 
----
 
----
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]
 
[[2011_Fall_ECE_438_Boutin|Back to ECE438 Fall 2011 Prof. Boutin]]

Latest revision as of 11:57, 26 November 2013


Practice Question on "Digital Signal Processing"

Topic: Continuous-space Fourier transform of a complex exponential


Question

What is the Continuous-space Fourier transform (CSFT) of $ f(x,y)= e^{j \pi (ax +by) } $?

Justify your answer.



Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ x[n] = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{j \pi (ax +by) }e^{-2j \pi (ux +vy) }dxdy $ Instructor's comment: Are you sure you mean x[n] on the left? -pm

$ = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{j \pi x(a-2u) }e^{j \pi y(b - 2v) }dxdy $ $ = \frac{1}{j\pi(a-2u)}\frac{1}{j\pi(b-2v)}[e^{j \pi x(a-2u)}e^{j \pi y(b - 2v) }]{-\infty}^{\infty} $ $ = {\infty} $

Instructor's comment: Please, please, please, do not try to integrate functions that are not integrable. This approach does not work. -pm

Answer 2

Claim that $ CSFT \{ e^{j \pi (ax +by) }\} = \delta(u-a,v-b) =\delta(u-a)\delta(v-b) $

Proof:

$ iCSFT\{\delta(u-a)\delta(v-b)\} = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\delta(u-a)\delta(v-b)e^{2j \pi (ux +vy) }dudv $

$ =\int_{-\infty}^{\infty}\delta(u-a)e^{2j \pi (ux) }du \int_{-\infty}^{\infty}\delta(v-b)e^{2j \pi (vy) }dv = e^{j \pi (ax)} e^{j \pi (by)} = e^{j \pi (ax +by)} $

Instructor's comment: Pretty good! -pm

Another way is to show by separality, since

$ f(x,y)=g(x)h(y),g(x) = e^{j \pi (ax)},h(y) = e^{j \pi (by) } $

then $ F(u,v)=G(u)H(v),G(u) = CTFT(f(x)),H(v) = CTFT(h(y)) $

by CTFT pairs, $ G(u) = /delta(u-a),H(v) = /delta(v-b) $

which shows $ CSFT \{ e^{j \pi (ax +by) }\} = \delta(u-a)\delta(v-b) $,

as the same above.

--Xiao1 23:12, 12 November 2011 (UTC)

Instructor's comment: On the exam, you could use the second approach if you were given a table of continuous-time fourier transform in which the Fourier transform of an exponential is given. Otherwise, you would need to justify this Fourier transform pair. -pm

Answer 3

$ F(u,v) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{j \pi (ax +by) }e^{-2j \pi (ux +vy) }dxdy=\int_{-\infty}^{\infty}e^{j \pi (ax)} e^{-j2 \pi u x}dx \int_{-\infty}^{\infty}e^{j \pi (by)} e^{-j2 \pi v y}dy=\delta(u-a/2) \delta(v-b/2) $

Instructor's comment: How do you justify the last equality? (For example, how do you know the answer is not 7 times what you wrote, or 42 times what you wrote (which both give you infinity and zero for the same values of u and v as the answer you give.) It seems like you just "plugged in" the answer. -pm

Back to ECE438 Fall 2011 Prof. Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn