(14 intermediate revisions by 5 users not shown)
Line 1: Line 1:
<div style="font-family: Verdana, sans-serif; font-size: 14px; text-align: justify; width: 80%; margin: auto; border: 1px solid #aaa; padding: 1em;">
+
[[Category:Formulas]]
<center>'''If you enjoy using this collective table of formula, please consider  [https://donate.purdue.edu/DesignateGift.aspx?allocation=017637&appealCode=11213&amount=25&allocationDescription=RheaProjectMimiBoutin donating to Project Rhea].'''</center>
+
 
</div>
+
<center><font size= 4>
 +
'''[[Collective_Table_of_Formulas|Collective Table of Formulas]]'''
 +
</font size>
 +
 
 +
'''Basic Signals and Functions'''
 +
 
 +
(used in [[ECE301]] and [[ECE438]])
 +
 
 +
</center>
 +
 
 +
----
 +
 
 
{|
 
{|
 
|-  
 
|-  
Line 8: Line 19:
 
! colspan="2" style="background: #eee;" | Continuous-time signals.  
 
! colspan="2" style="background: #eee;" | Continuous-time signals.  
 
|-
 
|-
| align="right" style="padding-right: 1em;" | sinc function || <math>sinc(t )=\frac{sin(\pi t )}{\pi\theta}, \text{ where }t\in {\mathbb R}</math>
+
| align="right" style="padding-right: 1em;" | sinc function || <math>sinc(t )=\frac{sin(\pi t )}{\pi t}, \text{ where }t\in {\mathbb R}</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | rect function || <math>rect (t) = \left\{ \begin{array}{ll}1, & \text{ for } |t|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ where }t\in {\mathbb R}</math>  
 
| align="right" style="padding-right: 1em;" | rect function || <math>rect (t) = \left\{ \begin{array}{ll}1, & \text{ for } |t|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ where }t\in {\mathbb R}</math>  
Line 25: Line 36:
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
([[2D_delta|info]]) 2D sinc dirac delta  
+
2D Dirac delta  
 
| <math>\delta(x,y)=\delta(x) \delta(y), \text{ where }x,y\in {\mathbb R}</math>
 
| <math>\delta(x,y)=\delta(x) \delta(y), \text{ where }x,y\in {\mathbb R}</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
([[2D_sinc|info]]) 2D sinc function  
+
2D sinc function  
| <math>sinc(x,y)=\frac{sin(\pi x)sin(\pi y)}{(\pi\theta)^2}, \text{ where }x,y\in {\mathbb R}</math>
+
| <math>sinc(x,y)=\frac{sin(\pi x)sin(\pi y)}{\pi^2 x y }, \text{ where }x,y\in {\mathbb R}</math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
Line 38: Line 49:
  
 
-----
 
-----
[[Collective_Table_of_Formulas|Back to Collective Table]]
+
[[Collective_Table_of_Formulas|Back to Collective Table]]
[[Category:Formulas]]
+

Latest revision as of 10:11, 18 September 2015


Collective Table of Formulas

Basic Signals and Functions

(used in ECE301 and ECE438)


Basic Signals and Functions in one variable
Continuous-time signals.
sinc function $ sinc(t )=\frac{sin(\pi t )}{\pi t}, \text{ where }t\in {\mathbb R} $
rect function $ rect (t) = \left\{ \begin{array}{ll}1, & \text{ for } |t|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ where }t\in {\mathbb R} $
CT unit step function $ u(t)=\left\{ \begin{array}{ll}1, & \text{ for } t\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ where }t\in {\mathbb R} $
Discrete-time signals
DT delta function $ \delta[n]=\left\{ \begin{array}{ll}1, & \text{ for } n=1 \\ 0, & \text{ else}\end{array}\right., \text{ where }n\in {\mathbb Z} $
DT unit step function $ u[n]=\left\{ \begin{array}{ll}1, & \text{ for } n\geq 0 \\ 0, & \text{ else}\end{array}\right., \text{ where }n\in {\mathbb Z} $
Basic Signals and Functions in two variables
Continuous-time

2D Dirac delta

$ \delta(x,y)=\delta(x) \delta(y), \text{ where }x,y\in {\mathbb R} $

2D sinc function

$ sinc(x,y)=\frac{sin(\pi x)sin(\pi y)}{\pi^2 x y }, \text{ where }x,y\in {\mathbb R} $

(info) 2D rect function

$ rect(x,y)= \left\{ \begin{array}{ll}1, & \text{ for } |x|\leq \frac{1}{2} \text{ and } |y|\leq \frac{1}{2} \\ 0, & \text{ else}\end{array}\right., \text{ where }x,y\in {\mathbb R} $

Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett