(New page: I did the first one by contradiction and a lot of cases. <math>Test, $\sup$ \sup</math>) |
(Cleaned up and made a final of 3.) |
||
(21 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | + | 1) | |
− | <math> | + | I did the first one by contradiction. I noted that the first time I looked through it I forgot to verify their existance via the lub property of the reals, and I still wonder whether the proof needs cases by whether the supremum is infinite or finite. |
+ | |||
+ | Given <math>A, B \neq \varnothing \subseteq \mathbf{R}, A+B = \{ a+b \vert a \in A, b \in B \}</math>, and I'll let <math>\alpha = \sup A, \beta = \sup B</math> | ||
+ | |||
+ | WTS: <math>\sup(A+B) = \alpha + \beta</math> | ||
+ | |||
+ | First of all, by the lub property of <math>\mathbf{R}</math> we know that these exist. | ||
+ | |||
+ | Now we show that <math>\alpha + \beta</math> is an upper bound of <math>A+B</math> by contradiction. Thus <math>\exist a,b \in A,B \ni a+b > \alpha + \beta </math> | ||
+ | |||
+ | <math>(\alpha - a) + (\beta - b) < 0</math> | ||
+ | |||
+ | WLOG assume <math>(\alpha - a) < 0</math>, then <math>\exists a \in A \ni a > \alpha,</math> but <math>\alpha = \sup A</math>, contradiction. | ||
+ | |||
+ | <math>\therefore \alpha + \beta</math> is an upper bound of <math>A+B</math> | ||
+ | |||
+ | Now we show that it is the least upper bound. Let <math>\delta</math> be an upper bound of <math>A+B</math>, we need to show that <math>\delta \geq \alpha + \beta</math>. | ||
+ | |||
+ | Assume not, then <math>\delta < \alpha + \beta</math>, let <math>c = \alpha + \beta - \delta > 0</math> and note <math>\delta = \alpha + (\beta - c)</math>. But since <math>\delta</math> is an upper bound of <math>A+B</math> then <math>\forall a,b \in A,B, a+b \leq \alpha + b \leq \delta = \alpha + \beta - c</math>. But then <math>\forall b \in B, b \leq \beta - c</math> so we have an upper bound for <math>B</math> that's smaller than the lub of <math>B</math>, contradiction. | ||
+ | |||
+ | Therefore, <math>\alpha + \beta</math> is the lub of <math>A+B</math> | ||
+ | |||
+ | Done. | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | '''Bobby's criticism:''' The sets A and B are not bounded above so you cannot apply the LUB property! If they are, your proof looks good. If not, your proof may have problems manipulating <math>\infty=\sup A</math>. Break it into cases. | ||
+ | |||
+ | :'''Dave's Reply:''' Aight, then the above proof deals with the case where <math>A</math> and <math>B</math> are bounded. | ||
+ | |||
+ | ''Addendum'' | ||
+ | |||
+ | Case Two: WLOG <math>A</math> unbounded <math>B</math> bounded. Then <math>\sup A+B = \infty, \sup A = \infty, \sup B = \beta</math> And using extended real number system properties <math>\infty = \sup A + B = \sup A + \sup B = \infty + \beta = \infty</math>. | ||
+ | |||
+ | Case Three: Both unbounded. Then <math>\sup A+B = \infty, \sup A = \infty, \sup B = \infty</math> And using extended real number system properties <math>\infty = \sup A + B = \sup A + \sup B = \infty + \infty = \infty</math>. | ||
+ | |||
+ | |||
+ | |||
+ | 2) | ||
+ | |||
+ | '''Note:''' This needs bounded/unbounded cases stuff too. | ||
+ | |||
+ | Let <math>A \neq \varnothing \subseteq \mathbf{R}, -A := \{ -a : a \in A \}</math>, we will show that <math>- \sup A = \inf (-A)</math>. Let <math>\alpha = \sup A</math> (exists by lub property of <math>\mathbf{R}</math>) | ||
+ | |||
+ | We first show that <math>- \alpha</math> is a lower bound. I.e., we WTS <math>\forall \gamma \in -A, - \alpha < \gamma</math> | ||
+ | |||
+ | But this is true <math>\because \alpha > - \gamma, \forall - \gamma \in A</math> by <math>\alpha</math> being an upper bound of <math>A</math>. | ||
+ | |||
+ | Now we show that this is the greatest lower bound. Let <math>\beta</math> be a lower bound of <math>-A</math> | ||
+ | |||
+ | Then <math>- \beta</math> is an upper bound of <math>A</math> | ||
+ | |||
+ | Then <math>- \beta \geq - \alpha</math> | ||
+ | |||
+ | Then <math>\alpha \geq \beta</math> | ||
+ | |||
+ | <math>\therefore - \alpha</math> is the glb of <math>-A</math> | ||
+ | |||
+ | Done. | ||
+ | |||
+ | |||
+ | 3) | ||
+ | |||
+ | Let <math>A \neq \varnothing \subseteq \mathbf{R}, \alpha = \sup A < \infty, \exists \delta > 0 \ni \forall a,b \in A \vert a - b \vert \geq \delta</math>. We will show that <math>\alpha \in A</math>. | ||
+ | |||
+ | Assume <math>\alpha \not \in A</math>, then <math>\forall a \in A, a < \alpha</math>. Also given <math>a \in A, \exists b \in A \ni a < b < \alpha</math> else <math>\forall b \in A, b \leq a</math> and then <math>a = \alpha</math>, contradiction. (1) | ||
+ | |||
+ | So, choose <math>c_1 \in (a,\alpha)</math>, <math>a + \delta \leq c_1</math> by our <math>\delta</math> property. | ||
+ | |||
+ | And we will show by induction that <math>a + n \delta \leq c_n</math>. (2) | ||
+ | |||
+ | :We've established the base case. | ||
+ | |||
+ | :Assume <math>a + n \delta \leq c_n </math>, we will show that <math>a + (n+1) \delta \leq c_{n+1}</math> for some <math>c_{n+1} \in (c_n, \alpha )</math> (we have <math>c_{n+1} \in (c_n, \alpha )</math> by (1) ). | ||
+ | |||
+ | :By this set's property we know that <math>\vert c_{n+1} - c_n \vert \geq \delta</math>, and since <math>c_{n+1} > c_n</math> we know that <math>c_{n+1} \geq \delta + c_n</math> and then using our inductive hypothesis this is <math> \geq a + n \delta + \delta = a + (n+1) \delta</math>. | ||
+ | |||
+ | :Which shows that <math>a + (n+1) \delta \leq c_{n+1}</math> for some <math>c_{n+1} \in (c_n, \alpha )</math>, which completes the inductive proof. | ||
+ | |||
+ | Now, by the Archimedean property and (2) <math>\exists k \ni a + (k-1) \delta \leq \alpha < a + k \delta </math>. But this suggests that either <math>\alpha</math> is not the lub, or <math>\alpha \in A</math>. Contradiction. | ||
+ | |||
+ | <math>\therefore \alpha \in A</math>. | ||
+ | |||
+ | Done. | ||
+ | |||
+ | 4) | ||
+ | |||
+ | '''Note:''' This needs to be split into cases for <math>x > 0</math> and <math>x \leq 0</math>. I assume it's positive here. If it's negative use <math>\inf A</math> instead of <math>\sup</math>, follow mutatis mutandis, and Godspeed. | ||
+ | |||
+ | Let <math>A \neq \varnothing \subseteq \mathbf{R}, A</math> bounded (finally), fix <math>x, y \in \mathbf{R}</math>, and set <math>T := \{ ax+y : a \in A \}</math>. We find <math>\sup T</math> | ||
+ | |||
+ | By lub property we have <math>\alpha = \sup A \in \mathbf{R}</math>. | ||
+ | |||
+ | My intuition says <math>\sup T = x \alpha + y</math> and we will proceed to check this. | ||
+ | |||
+ | i) We show that <math>\forall \gamma \in T, \gamma \leq x \alpha + y</math>. | ||
+ | |||
+ | But since <math>\gamma \in T, \exists \gamma ' \in A \ni x \gamma ' + y = \gamma</math> | ||
+ | |||
+ | And since <math>\forall \gamma ' \in A, \gamma ' \leq \alpha</math> | ||
+ | |||
+ | <math>x \gamma ' \leq x \alpha</math> (This is why a split in cases should be needed) | ||
+ | |||
+ | <math>x \gamma ' + y \leq x \alpha + y</math> | ||
+ | |||
+ | And thus we've established that it's an upper bound. | ||
+ | |||
+ | ii) We show that if <math>\beta</math> is a ub of <math>T</math>, then <math>x \alpha + y \leq \beta</math>. | ||
+ | |||
+ | <math>\exists \beta ' \in \mathbf{R} \ni x \beta ' + y = \beta</math>, then with some algebra we establish the above claim by using the fact that <math>\alpha</math> is a lub. | ||
+ | |||
+ | Done. |
Latest revision as of 04:08, 29 August 2008
1)
I did the first one by contradiction. I noted that the first time I looked through it I forgot to verify their existance via the lub property of the reals, and I still wonder whether the proof needs cases by whether the supremum is infinite or finite.
Given $ A, B \neq \varnothing \subseteq \mathbf{R}, A+B = \{ a+b \vert a \in A, b \in B \} $, and I'll let $ \alpha = \sup A, \beta = \sup B $
WTS: $ \sup(A+B) = \alpha + \beta $
First of all, by the lub property of $ \mathbf{R} $ we know that these exist.
Now we show that $ \alpha + \beta $ is an upper bound of $ A+B $ by contradiction. Thus $ \exist a,b \in A,B \ni a+b > \alpha + \beta $
$ (\alpha - a) + (\beta - b) < 0 $
WLOG assume $ (\alpha - a) < 0 $, then $ \exists a \in A \ni a > \alpha, $ but $ \alpha = \sup A $, contradiction.
$ \therefore \alpha + \beta $ is an upper bound of $ A+B $
Now we show that it is the least upper bound. Let $ \delta $ be an upper bound of $ A+B $, we need to show that $ \delta \geq \alpha + \beta $.
Assume not, then $ \delta < \alpha + \beta $, let $ c = \alpha + \beta - \delta > 0 $ and note $ \delta = \alpha + (\beta - c) $. But since $ \delta $ is an upper bound of $ A+B $ then $ \forall a,b \in A,B, a+b \leq \alpha + b \leq \delta = \alpha + \beta - c $. But then $ \forall b \in B, b \leq \beta - c $ so we have an upper bound for $ B $ that's smaller than the lub of $ B $, contradiction.
Therefore, $ \alpha + \beta $ is the lub of $ A+B $
Done.
Bobby's criticism: The sets A and B are not bounded above so you cannot apply the LUB property! If they are, your proof looks good. If not, your proof may have problems manipulating $ \infty=\sup A $. Break it into cases.
- Dave's Reply: Aight, then the above proof deals with the case where $ A $ and $ B $ are bounded.
Addendum
Case Two: WLOG $ A $ unbounded $ B $ bounded. Then $ \sup A+B = \infty, \sup A = \infty, \sup B = \beta $ And using extended real number system properties $ \infty = \sup A + B = \sup A + \sup B = \infty + \beta = \infty $.
Case Three: Both unbounded. Then $ \sup A+B = \infty, \sup A = \infty, \sup B = \infty $ And using extended real number system properties $ \infty = \sup A + B = \sup A + \sup B = \infty + \infty = \infty $.
2)
Note: This needs bounded/unbounded cases stuff too.
Let $ A \neq \varnothing \subseteq \mathbf{R}, -A := \{ -a : a \in A \} $, we will show that $ - \sup A = \inf (-A) $. Let $ \alpha = \sup A $ (exists by lub property of $ \mathbf{R} $)
We first show that $ - \alpha $ is a lower bound. I.e., we WTS $ \forall \gamma \in -A, - \alpha < \gamma $
But this is true $ \because \alpha > - \gamma, \forall - \gamma \in A $ by $ \alpha $ being an upper bound of $ A $.
Now we show that this is the greatest lower bound. Let $ \beta $ be a lower bound of $ -A $
Then $ - \beta $ is an upper bound of $ A $
Then $ - \beta \geq - \alpha $
Then $ \alpha \geq \beta $
$ \therefore - \alpha $ is the glb of $ -A $
Done.
3)
Let $ A \neq \varnothing \subseteq \mathbf{R}, \alpha = \sup A < \infty, \exists \delta > 0 \ni \forall a,b \in A \vert a - b \vert \geq \delta $. We will show that $ \alpha \in A $.
Assume $ \alpha \not \in A $, then $ \forall a \in A, a < \alpha $. Also given $ a \in A, \exists b \in A \ni a < b < \alpha $ else $ \forall b \in A, b \leq a $ and then $ a = \alpha $, contradiction. (1)
So, choose $ c_1 \in (a,\alpha) $, $ a + \delta \leq c_1 $ by our $ \delta $ property.
And we will show by induction that $ a + n \delta \leq c_n $. (2)
- We've established the base case.
- Assume $ a + n \delta \leq c_n $, we will show that $ a + (n+1) \delta \leq c_{n+1} $ for some $ c_{n+1} \in (c_n, \alpha ) $ (we have $ c_{n+1} \in (c_n, \alpha ) $ by (1) ).
- By this set's property we know that $ \vert c_{n+1} - c_n \vert \geq \delta $, and since $ c_{n+1} > c_n $ we know that $ c_{n+1} \geq \delta + c_n $ and then using our inductive hypothesis this is $ \geq a + n \delta + \delta = a + (n+1) \delta $.
- Which shows that $ a + (n+1) \delta \leq c_{n+1} $ for some $ c_{n+1} \in (c_n, \alpha ) $, which completes the inductive proof.
Now, by the Archimedean property and (2) $ \exists k \ni a + (k-1) \delta \leq \alpha < a + k \delta $. But this suggests that either $ \alpha $ is not the lub, or $ \alpha \in A $. Contradiction.
$ \therefore \alpha \in A $.
Done.
4)
Note: This needs to be split into cases for $ x > 0 $ and $ x \leq 0 $. I assume it's positive here. If it's negative use $ \inf A $ instead of $ \sup $, follow mutatis mutandis, and Godspeed.
Let $ A \neq \varnothing \subseteq \mathbf{R}, A $ bounded (finally), fix $ x, y \in \mathbf{R} $, and set $ T := \{ ax+y : a \in A \} $. We find $ \sup T $
By lub property we have $ \alpha = \sup A \in \mathbf{R} $.
My intuition says $ \sup T = x \alpha + y $ and we will proceed to check this.
i) We show that $ \forall \gamma \in T, \gamma \leq x \alpha + y $.
But since $ \gamma \in T, \exists \gamma ' \in A \ni x \gamma ' + y = \gamma $
And since $ \forall \gamma ' \in A, \gamma ' \leq \alpha $
$ x \gamma ' \leq x \alpha $ (This is why a split in cases should be needed)
$ x \gamma ' + y \leq x \alpha + y $
And thus we've established that it's an upper bound.
ii) We show that if $ \beta $ is a ub of $ T $, then $ x \alpha + y \leq \beta $.
$ \exists \beta ' \in \mathbf{R} \ni x \beta ' + y = \beta $, then with some algebra we establish the above claim by using the fact that $ \alpha $ is a lub.
Done.