(34 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
=Homework 2 collaboration area=
 
=Homework 2 collaboration area=
 +
 +
Here's some interesting stuff:
  
 
<math>\sum_{n=1}^N 1 = \dfrac11N</math>
 
<math>\sum_{n=1}^N 1 = \dfrac11N</math>
Line 7: Line 9:
 
<math>\sum_{n=1}^N n\left(n+1\right) = \dfrac13N\left(N+1\right)\left(N+2\right)</math>
 
<math>\sum_{n=1}^N n\left(n+1\right) = \dfrac13N\left(N+1\right)\left(N+2\right)</math>
  
<math>\quad\vdots</math>
+
        <math>\vdots</math>                  <math>\vdots</math>
 +
 
 +
From the observation, we can assume the following formula is true:
 +
 
 +
<math>\sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}\quad \mathrm{for}\;k\in\mathbb{N}</math>
 +
----
 +
==Discussion==
 +
*Would somebody care to add these to the [[Collective_Table_of_Formulas]]? Perhaps one should create be a new page dedicated to summation formulas.
  
 +
----
 +
[[2011_Fall_MA_181_Bell|Back to MA 181, Prof. Bell]]
  
 
[[Category:MA181Fall2011Bell]]
 
[[Category:MA181Fall2011Bell]]

Latest revision as of 03:17, 6 September 2011

Homework 2 collaboration area

Here's some interesting stuff:

$ \sum_{n=1}^N 1 = \dfrac11N $

$ \sum_{n=1}^N n = \dfrac12N\left(N+1\right) $

$ \sum_{n=1}^N n\left(n+1\right) = \dfrac13N\left(N+1\right)\left(N+2\right) $

       $ \vdots $                  $ \vdots $

From the observation, we can assume the following formula is true:

$ \sum_{n=1}^N \dfrac{\left(n+k\right)!}{\left(n-1\right)!} = \dfrac1{k+2}\cdot\dfrac{\left(N+k+1\right)!}{\left(N-1\right)!}\quad \mathrm{for}\;k\in\mathbb{N} $


Discussion

  • Would somebody care to add these to the Collective_Table_of_Formulas? Perhaps one should create be a new page dedicated to summation formulas.

Back to MA 181, Prof. Bell

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang