Line 1: Line 1:
= Practice Question on Nyquist rate  =
+
= [[:Category:Problem_solving|Practice Question]] on Nyquist rate  =
 
What is the Nyquist rate of the signal
 
What is the Nyquist rate of the signal
  

Latest revision as of 09:31, 11 November 2011

Practice Question on Nyquist rate

What is the Nyquist rate of the signal

$ x(t) = \frac{ \sin ( \pi t )}{\pi t} \frac{ \sin ( 3 \pi t )}{\pi t} ? $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

From property 9 of the table: $ \mathcal{F}(\frac{\sin( W t)}{\pi t }) = \left\{\begin{array}{ll}1, & \text{ if }|\omega| <W,\\ 0, & \text{else.}\end{array} \right. \ $

By property 16 of the table: The Fourier transform of the product of two functions is (1/2pi) times the convolution of the Fourier transforms of the individual functions.

So in this case $ \mathcal{F}(x(t))=(u(\omega + \pi) - u(\omega - \pi))*(u(\omega + 3\pi) - u(\omega - 3\pi)) $

$ \mathcal{F}(x(t))=\int_{-\infty}^{\infty} (u(\theta + \pi)-u(\theta - \pi))(u(\omega -\theta + 3\pi)-u(\omega - \theta - 3\pi)) d\theta $


$ \mathcal{F}(x(t))=\int_{-\pi}^{\pi} (u(\omega -\theta + 3\pi)-u(\omega - \theta - 3\pi)) d\theta $

The first step function in the integral is 0 for $ \omega < \theta - 3\pi $. The second step function in the integral is 0 for $ \omega < \theta + 3\pi $. Thus:

$ \mathcal{F}(x(t))= 0 $ for $ \omega < -4\pi $

$ \mathcal{F}(x(t))= 4\pi + \omega $ for $ -4\pi < \omega < -2\pi $

$ \mathcal{F}(x(t))= 2\pi $ for $ -2\pi < \omega < 2\pi $

$ \mathcal{F}(x(t))= 4\pi - \omega $ for $ 2\pi < \omega < 4\pi $

$ \mathcal{F}(x(t))= 0 $ for $ \omega > 4\pi $

The Nyquist rate is twice the maximum nonzero frequency, or $ 2(4\pi) = 8\pi $.


Answer 2

Write it here

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang