(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
+
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]] [[Category:z-transform]]
 
----
 
----
= Practice Question on Computing the z-transform =
+
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 
 +
Topic: Computing a z-transform
 +
 
 +
</center>
 +
----
 +
==Question==
  
 
Compute the z-transform of the following signal.
 
Compute the z-transform of the following signal.
Line 25: Line 33:
 
--[[User:Cmcmican|Cmcmican]] 22:09, 16 April 2011 (UTC)
 
--[[User:Cmcmican|Cmcmican]] 22:09, 16 April 2011 (UTC)
 
:<span style="color:green">TA's comment: Correct!</span>
 
:<span style="color:green">TA's comment: Correct!</span>
 +
:<span style="color:blue">Instructor's comment: Exactly where do you get that the norm of z must be less than one for convergence? It is important to clearly state it.</span>
 
=== Answer 2  ===
 
=== Answer 2  ===
Write it here.
+
<math>X(z) = \sum_{n = -\infty}^{\infty} u[-n]z^{-n}</math>
 +
 
 +
<math>X(z) = \sum_{n = -\infty}^{0} z^{-n}</math>
 +
 
 +
let l = -n
 +
 
 +
<math>X(z) = \sum_{l=0}^{\infty}z^{l} = \begin{cases}\frac{1}{1-z}, &|z|<1 \\ diverdges, &else \end{cases}</math>
  
 
=== Answer 3  ===
 
=== Answer 3  ===

Latest revision as of 11:50, 26 November 2013


Practice Question on "Digital Signal Processing"

Topic: Computing a z-transform


Question

Compute the z-transform of the following signal.

$ x[n]=u[-n] $


Share your answers below

Prof. Mimi gave me this problem in class on Friday, so I'm posting it and my answer here. --Cmcmican 22:09, 16 April 2011 (UTC)


Answer 1

$ X(z)=\sum_{n=-\infty}^\infty u[-n]z^{-n} $

let k=-n

$ =\sum_{k=0}^\infty z^{k} $

$ X(z)=\frac{1}{1-z} \mbox{, ROC: }\Big|z\Big|<1 $

--Cmcmican 22:09, 16 April 2011 (UTC)

TA's comment: Correct!
Instructor's comment: Exactly where do you get that the norm of z must be less than one for convergence? It is important to clearly state it.

Answer 2

$ X(z) = \sum_{n = -\infty}^{\infty} u[-n]z^{-n} $

$ X(z) = \sum_{n = -\infty}^{0} z^{-n} $

let l = -n

$ X(z) = \sum_{l=0}^{\infty}z^{l} = \begin{cases}\frac{1}{1-z}, &|z|<1 \\ diverdges, &else \end{cases} $

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn