(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
+
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 
 +
Topic: Computing an inverse z-transform
 +
 
 +
</center>
 
----
 
----
= Practice Question on Computing the inverse z-transform  =
+
==Question==
  
Compute the inverse z-transform of the following signal.
+
Compute the inverse z-transform of the following signal.  
  
<math>X(z)=\frac{1}{1+3z} \mbox{, } \Big|z\Big|<\frac{1}{3}</math>
+
<math>X(z)=\frac{1}{1+3z} \mbox{, } \Big|z\Big|<\frac{1}{3}</math>  
  
 
----
 
----
  
 
== Share your answers below  ==
 
== Share your answers below  ==
Prof. Mimi gave me this problem in class on Friday, so I'm posting it and my answer here.
+
 
--[[User:Cmcmican|Cmcmican]] 22:22, 16 April 2011 (UTC)
+
Prof. Mimi gave me this problem in class on Friday, so I'm posting it and my answer here. --[[User:Cmcmican|Cmcmican]] 22:22, 16 April 2011 (UTC)  
 +
 
 
----
 
----
 +
 
=== Answer 1  ===
 
=== Answer 1  ===
  
<math>X(z)=\sum_{k=0}^\infty (-3z)^k=\sum_{k=-\infty}^\infty u[k](-3)^kz^k</math>
+
<math>X(z)=\sum_{k=0}^\infty (-3z)^k=\sum_{k=-\infty}^\infty u[k](-3)^kz^k</math>  
  
let n=-k
+
let n=-k  
  
<math>=\sum_{n=-\infty}^\infty u[-n](-3)^{-n} z^{-n}</math>
+
<math>=\sum_{n=-\infty}^\infty u[-n](-3)^{-n} z^{-n}</math>  
  
By comparison with <math class="inline">\sum_{n=-\infty}^\infty x[n] z^{-n}:</math>
+
By comparison with <math>\sum_{n=-\infty}^\infty x[n] z^{-n}:</math>  
  
<math>x[n]=(-3)^{-n}u[-n]\,</math>
+
<math>x[n]=(-3)^{-n}u[-n]\,</math>  
  
--[[User:Cmcmican|Cmcmican]] 22:22, 16 April 2011 (UTC)
+
--[[User:Cmcmican|Cmcmican]] 22:22, 16 April 2011 (UTC)  
 +
 
 +
:<span style="color: green">TA's comment: Good Job!</span>
 +
:<span style="color: blue">Instructor's comment: You may want to mention where you use the fact that |z|&lt;1/3.</span>
  
 
=== Answer 2  ===
 
=== Answer 2  ===
Write it here.
+
 
 +
I agree, but for the missing&nbsp;steps on |z|&lt;1/3, you can say
 +
 
 +
Since |z| &lt; 1/3,&nbsp; |3z| &lt;&nbsp;1
 +
 
 +
Therefore, |-3z| &lt; 1
 +
 
 +
By comparison with the geometric series, where it diverges for |-3z| &lt; 1, you can rewrite the problem as shown in Answer 1.
 +
 
 +
--[[User:Kellsper|Kellsper]] 16:12, 21 April 2011 (UTC)
 +
:<span style="color: blue">Instructor's comment: Good. You may shorten this explanation a bit when you write it on the exam. Just say </span>
 +
::<math class="inline"> X(z)=\frac{1}{1+3z}=\frac{1}{1-(-3z)}=\sum_{k=0}^\infty (-3z)^k</math>, since <math>|-3z|=|3z|<1</math> when <math class="inline">|z|<\frac{1}{3}</math>.
 +
::<span style="color: blue">-pm .</span>
 +
 
  
 
=== Answer 3  ===
 
=== Answer 3  ===
Write it here.
+
 
 +
Write it here.  
 +
 
 
----
 
----
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]
+
 
 +
[[2011 Spring ECE 301 Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]
 +
 
 +
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]] [[Category:inverse z-transform]]

Latest revision as of 11:51, 26 November 2013

Practice Question on "Digital Signal Processing"

Topic: Computing an inverse z-transform


Question

Compute the inverse z-transform of the following signal.

$ X(z)=\frac{1}{1+3z} \mbox{, } \Big|z\Big|<\frac{1}{3} $


Share your answers below

Prof. Mimi gave me this problem in class on Friday, so I'm posting it and my answer here. --Cmcmican 22:22, 16 April 2011 (UTC)


Answer 1

$ X(z)=\sum_{k=0}^\infty (-3z)^k=\sum_{k=-\infty}^\infty u[k](-3)^kz^k $

let n=-k

$ =\sum_{n=-\infty}^\infty u[-n](-3)^{-n} z^{-n} $

By comparison with $ \sum_{n=-\infty}^\infty x[n] z^{-n}: $

$ x[n]=(-3)^{-n}u[-n]\, $

--Cmcmican 22:22, 16 April 2011 (UTC)

TA's comment: Good Job!
Instructor's comment: You may want to mention where you use the fact that |z|<1/3.

Answer 2

I agree, but for the missing steps on |z|<1/3, you can say

Since |z| < 1/3,  |3z| < 1

Therefore, |-3z| < 1

By comparison with the geometric series, where it diverges for |-3z| < 1, you can rewrite the problem as shown in Answer 1.

--Kellsper 16:12, 21 April 2011 (UTC)

Instructor's comment: Good. You may shorten this explanation a bit when you write it on the exam. Just say
$ X(z)=\frac{1}{1+3z}=\frac{1}{1-(-3z)}=\sum_{k=0}^\infty (-3z)^k $, since $ |-3z|=|3z|<1 $ when $ |z|<\frac{1}{3} $.
-pm .


Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett