(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
 
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
 
----
 
----
= Practice Question on Computing the Fourier Transform of a Discrete-time Signal  =
+
= [[:Category:Problem_solving|Practice Question]] on Computing the Fourier Transform of a Discrete-time Signal  =
  
 
Compute the Fourier transform of the signal
 
Compute the Fourier transform of the signal
Line 24: Line 24:
  
 
=== Answer 2  ===
 
=== Answer 2  ===
Write it here.
+
 
 +
So it should be like this.
 +
 
 +
<math>\mathcal X (\omega) = \sum_{n=-\infty}^\infty (u[n+1]-u[n-2])e^{-j\omega n}=\sum_{n=-1}^1 e^{-j\omega n}=</math>
 +
 
 +
<math>\mathcal X (\omega) = e^{j\omega}+1+e^{-j\omega}</math>
 +
 
 +
--[[User:Cmcmican|Cmcmican]] 11:57, 2 March 2011 (UTC)
 +
 
 
=== Answer 3  ===
 
=== Answer 3  ===
 
Write it here.
 
Write it here.
 
----
 
----
 
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]
 
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]

Latest revision as of 09:28, 11 November 2011


Practice Question on Computing the Fourier Transform of a Discrete-time Signal

Compute the Fourier transform of the signal

$ x[n] = u[n+1]-u[n-2].\ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ \mathcal X (\omega) = \sum_{n=-\infty}^\infty (u[n+1]-u[n-2])e^{-j\omega n}=\sum_{n=-1}^2 e^{-j\omega n}= $

$ \mathcal X (\omega) = e^{j\omega}+1+e^{-j\omega}+e^{-j2\omega} $

--Cmcmican 19:57, 28 February 2011 (UTC)

TA's comments: You have a small mistake in that. Note that $ u[n-2] $ starts at $ n=2 $ and not $ n=3 $.

Answer 2

So it should be like this.

$ \mathcal X (\omega) = \sum_{n=-\infty}^\infty (u[n+1]-u[n-2])e^{-j\omega n}=\sum_{n=-1}^1 e^{-j\omega n}= $

$ \mathcal X (\omega) = e^{j\omega}+1+e^{-j\omega} $

--Cmcmican 11:57, 2 March 2011 (UTC)

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang