Line 1: Line 1:
 
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
 
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
 
----
 
----
= Practice Question on Computing the Fourier Transform of a Discrete-time Signal  =
+
= [[:Category:Problem_solving|Practice Question]] on Computing the Fourier Transform of a Discrete-time Signal  =
  
 
Compute the Fourier transform of the signal
 
Compute the Fourier transform of the signal

Latest revision as of 09:27, 11 November 2011


Practice Question on Computing the Fourier Transform of a Discrete-time Signal

Compute the Fourier transform of the signal

$ x[n] = \cos \left( \frac{\pi}{6}n \right).\ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ \cos \left( \frac{\pi}{6}n \right)=\frac{1}{2}e^{j\frac{\pi}{6}n}+\frac{1}{2}e^{-j\frac{\pi}{6}n} $

$ \mathcal X (\omega)=\sum_{m=-\infty}^\infty 2\pi \delta (\omega-k\omega_0+2\pi m) $

$ \mathcal X (\omega)=\sum_{m=-\infty}^\infty 2\pi \delta (\omega-\frac{\pi}{6}+2\pi m)+\sum_{m=-\infty}^\infty 2\pi \delta (\omega+\frac{\pi}{6}+2\pi m) $

--Cmcmican 19:51, 28 February 2011 (UTC)

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett