(New page: Category:ECE301Spring2011Boutin Category:Problem_solving ---- = Practice Question on Computing the Fourier Transform of a Discrete-time Signal = Compute the Fourier transform of ...)
 
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
 
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
 
----
 
----
= Practice Question on Computing the Fourier Transform of a Discrete-time Signal  =
+
= [[:Category:Problem_solving|Practice Question]] on Computing the Fourier Transform of a Discrete-time Signal  =
  
 
Compute the Fourier transform of the signal
 
Compute the Fourier transform of the signal
Line 15: Line 15:
 
----
 
----
 
=== Answer 1  ===
 
=== Answer 1  ===
Write it here.
+
 
 +
<math class="inline">{\mathcal X} (\omega) = \sum_{n=-\infty}^\infty x[n]e^{-j\omega n}=\sum_{n=-\infty}^\infty 3^n u[-n]e^{-j\omega n}=\sum_{n=-\infty}^0 3^n e^{-j\omega n}=\sum_{n=-\infty}^0 \Bigg(\frac{3}{e^{j\omega}}\Bigg)^n</math>  Let k=-n
 +
 
 +
<math>= \sum_{n=0}^\infty \Bigg(\frac{e^{j\omega}}{3}\Bigg)^k</math>
 +
 
 +
<math>\mathcal X (\omega) = \frac{1}{1-\frac{e^{j\omega}}{3}}</math>
 +
 
 +
--[[User:Cmcmican|Cmcmican]] 19:42, 28 February 2011 (UTC)
 +
:<span style="color:green">TA's comments: The answer is correct. The geometric series converges because <math class="inline">\color{OliveGreen}{\left|\frac{e^{j\omega}}{3}\right|=\frac{1}{3}<1}</math>.</span>
 
=== Answer 2  ===
 
=== Answer 2  ===
 
Write it here.
 
Write it here.

Latest revision as of 09:27, 11 November 2011


Practice Question on Computing the Fourier Transform of a Discrete-time Signal

Compute the Fourier transform of the signal

$ x[n] = 3^n u[-n].\ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ {\mathcal X} (\omega) = \sum_{n=-\infty}^\infty x[n]e^{-j\omega n}=\sum_{n=-\infty}^\infty 3^n u[-n]e^{-j\omega n}=\sum_{n=-\infty}^0 3^n e^{-j\omega n}=\sum_{n=-\infty}^0 \Bigg(\frac{3}{e^{j\omega}}\Bigg)^n $ Let k=-n

$ = \sum_{n=0}^\infty \Bigg(\frac{e^{j\omega}}{3}\Bigg)^k $

$ \mathcal X (\omega) = \frac{1}{1-\frac{e^{j\omega}}{3}} $

--Cmcmican 19:42, 28 February 2011 (UTC)

TA's comments: The answer is correct. The geometric series converges because $ \color{OliveGreen}{\left|\frac{e^{j\omega}}{3}\right|=\frac{1}{3}<1} $.

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang