(New page: Category:ECE301Spring2011Boutin Category:Problem_solving ---- = Practice Question on Computing the Fourier Transform of a Continuous-time Signal = Compute the Fourier transform o...)
 
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
 
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
 
----
 
----
= Practice Question on Computing the Fourier Transform of a Continuous-time Signal  =
+
= [[:Category:Problem_solving|Practice Question]] on Computing the Fourier Transform of a Continuous-time Signal  =
  
 
Compute the Fourier transform of the signal
 
Compute the Fourier transform of the signal
Line 15: Line 15:
 
----
 
----
 
=== Answer 1  ===
 
=== Answer 1  ===
Write it here.
+
 
 +
Guess <math>\chi(\omega)=2\pi\delta(\omega-2\pi k)\,</math> such that <math>\mathfrak{F}^{-1}=e^{jk2\pi t}</math>
 +
 
 +
check:
 +
 
 +
<math>\mathfrak{F}(2\pi\delta(\omega-2\pi k))=\frac{1}{2\pi}\int_{-\infty}^\infty2\pi\delta(\omega-2\pi k)e^{j\omega t}d\omega=e^{jk2\pi t}</math>
 +
 
 +
Therefore,<math>\chi(\omega)=2\pi\delta(\omega-2\pi k)\,</math>
 +
 
 +
--[[User:Cmcmican|Cmcmican]] 20:47, 21 February 2011 (UTC)
 +
:Instructor's comments: Take a look at your answer: it depends on k. However, the input does not depend on k. By the way, you can use the "mathcal" font to produce the curly X. Like this: <math>{\mathcal X}</math>. And if you use the inline class, it is aligned with the line like this: <math class="inline">{\mathcal X}</math>. -pm
 +
 
 +
 
 
=== Answer 2  ===
 
=== Answer 2  ===
Write it here.
+
 
 +
I'll try this again, using the formula for  Fourier transform of a periodic signal.
 +
 
 +
<math>\mathfrak{F}\Bigg(\frac{1}{2}e^{j2\pi t}+\frac{1}{2}e^{-j2\pi t}\Bigg)=\frac{2\pi}{2}\delta(\omega-2\pi)+\frac{2\pi}{2}\delta(\omega+\pi)</math>
 +
 
 +
Therefore <math class="inline">\mathcal X (\omega) =\pi\delta(\omega-2\pi)+\pi\delta(\omega+2\pi)</math>
 +
 
 +
--[[User:Cmcmican|Cmcmican]] 17:38, 23 February 2011 (UTC)
 +
 
 
=== Answer 3  ===
 
=== Answer 3  ===
 
Write it here.
 
Write it here.
 
----
 
----
 
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]
 
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]

Latest revision as of 09:25, 11 November 2011


Practice Question on Computing the Fourier Transform of a Continuous-time Signal

Compute the Fourier transform of the signal

$ x(t) = \cos (2 \pi t )\ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Guess $ \chi(\omega)=2\pi\delta(\omega-2\pi k)\, $ such that $ \mathfrak{F}^{-1}=e^{jk2\pi t} $

check:

$ \mathfrak{F}(2\pi\delta(\omega-2\pi k))=\frac{1}{2\pi}\int_{-\infty}^\infty2\pi\delta(\omega-2\pi k)e^{j\omega t}d\omega=e^{jk2\pi t} $

Therefore,$ \chi(\omega)=2\pi\delta(\omega-2\pi k)\, $

--Cmcmican 20:47, 21 February 2011 (UTC)

Instructor's comments: Take a look at your answer: it depends on k. However, the input does not depend on k. By the way, you can use the "mathcal" font to produce the curly X. Like this: $ {\mathcal X} $. And if you use the inline class, it is aligned with the line like this: $ {\mathcal X} $. -pm


Answer 2

I'll try this again, using the formula for Fourier transform of a periodic signal.

$ \mathfrak{F}\Bigg(\frac{1}{2}e^{j2\pi t}+\frac{1}{2}e^{-j2\pi t}\Bigg)=\frac{2\pi}{2}\delta(\omega-2\pi)+\frac{2\pi}{2}\delta(\omega+\pi) $

Therefore $ \mathcal X (\omega) =\pi\delta(\omega-2\pi)+\pi\delta(\omega+2\pi) $

--Cmcmican 17:38, 23 February 2011 (UTC)

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva