(New page: ---- == 1. Unit step == When <math>x[n]=1 (n{\ge}0)</math> <span class="texhtml">''x''[''n''] = 0(''n'' < 0)</span> <math>X(z)=\sum_{n=0}^{\infty}x[n]z^{n}=\sum_{n=0}^{\infty}...) |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:2010_Fall_ECE_438_Boutin]] | ||
+ | [[Category:z-transform]] | ||
+ | [[Category:bonus point project]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:ECE438]] | ||
+ | |||
+ | ==Examples of [[Info_z-transform|Z transform]] computations == | ||
+ | ---- | ||
+ | |||
---- | ---- | ||
Line 28: | Line 37: | ||
---- | ---- | ||
+ | [[Z_transform_ECE438F10|Back to z-transform tutorial]] |
Latest revision as of 12:47, 30 April 2015
Contents
Examples of Z transform computations
1. Unit step
When $ x[n]=1 (n{\ge}0) $ x[n] = 0(n < 0)
$ X(z)=\sum_{n=0}^{\infty}x[n]z^{n}=\sum_{n=0}^{\infty}1\cdot z^{-n}=\frac{1}{1-z^{-1}} $ , ROC : |z|>1
2. Power series
x[n]=an,
$ X(z)=\sum_{n=0}^{\infty}x[n]z^{n}=\sum_{n=0}^{\infty}a^{n} z^{-n}=\frac{1}{1-az^{-1}} $ , ROC : |z|>a
3. Exponential funtion
x[n]=e-an,
$ X(z)=\sum_{n=0}^{\infty}x[n]z^{n}=\sum_{n=0}^{\infty}e^{-an} z^{-n}=\sum_{n=0}^{\infty}[e^{-a} z^{-1}]^{n}=\frac{1}{1-e^{-a}z^{-n}} $ , ROC : |z|>e-a
4. Sinusoidal function
x[n]=sinwn,
$ X(z)=\sum_{n=0}^{\infty}x[n]z^{n}=\sum_{n=0}^{\infty}\frac{e^{jn{\omega}} -e^{-jn{\omega}}} {2j} z^{-n} $ $ =\frac{1}{2j} (\frac{1}{1-e^{j\omega}z^{-1}}-\frac{1}{1-e^{-j\omega}z^{-1}}) $ $ =\frac{1}{2j} (\frac{-e^{-j\omega}z^{-1}+e^{j\omega}z^{-1}}{1-e^{-j\omega}z^{-1}-e^{j\omega}z^{-1}+z^{-2}}) $ $ =\frac{z^{-1}sin(\omega)}{1-2z^{-1}cos(\omega)+z^{-2}} $