Line 1: Line 1:
=Example. Two jointly distributed random variables (Joint characteristic function)=
+
=Example. Two jointly distributed independent random variables=
  
Let <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  be tweo jointly distributed random variables having joint characteristic function
+
Let <math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  be two jointly distributed, independent random variables. The pdf of <math class="inline">\mathbf{X}</math>  is
  
<math>\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)=\frac{1}{\left(1-i\omega_{1}\right)\left(1-i\omega_{2}\right)}.</math>  
+
<math class="inline">f_{\mathbf{X}}\left(x\right)=xe^{-x^{2}/2}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(x\right)</math>, and <math class="inline">\mathbf{Y}</math>  is a Gaussian random variable with mean 0  and variance 1 . Let <math class="inline">\mathbf{U}</math>  and <math class="inline">\mathbf{V}</math>  be two new random variables defined as <math class="inline">\mathbf{U}=\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}}</math> and <math class="inline">\mathbf{V}=\lambda\mathbf{Y}/\mathbf{X}</math>  where <math class="inline">\lambda</math>  is a positive real number.
  
(a) Calculate <math>E\left[\mathbf{X}\right]</math> .
+
(a)
  
<math>\Phi_{\mathbf{X}}\left(\omega\right)=\Phi_{\mathbf{XY}}\left(\omega,0\right)=\frac{1}{1-i\omega}=\left(1-i\omega\right)^{-1}</math>  
+
Find the joint pdf of <math class="inline">\mathbf{U}</math>  and <math class="inline">\mathbf{V}</math> . (Direct pdf method)
  
<math>E\left[\mathbf{X}\right]=\frac{d}{d\left(i\omega\right)}\Phi_{\mathbf{X}}\left(\omega\right)|_{i\omega=0}=(-1)(1-i\omega)^{-2}(-1)|_{i\omega=0}=1</math>  
+
<math class="inline">f_{\mathbf{UV}}\left(u,v\right)=f_{\mathbf{XY}}\left(x\left(u,v\right),y\left(u,v\right)\right)\left|\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}\right|</math>  
  
(b) Calculate <math>E\left[\mathbf{Y}\right]</math>  
+
Solving for x  and y  in terms of u  and v , we have <math class="inline">u^{2}=x^{2}+y^{2}</math>  and <math class="inline">v^{2}=\frac{\lambda^{2}y^{2}}{x^{2}}\Longrightarrow y^{2}=\frac{v^{2}x^{2}}{\lambda^{2}}</math> .
  
<math>E\left[\mathbf{Y}\right]=1</math>  
+
Now, <math class="inline">u^{2}=x^{2}+y^{2}=x^{2}+\frac{v^{2}x^{2}}{\lambda^{2}}=x^{2}\left(1+v^{2}/\lambda^{2}\right)\Longrightarrow x=\frac{u}{\sqrt{1+v^{2}/\lambda^{2}}}\Longrightarrow x\left(u,v\right)=\frac{u}{\sqrt{1+v^{2}/\lambda^{2}}}</math> .
  
(c) Calculate <math>E\left[\mathbf{XY}\right]</math> .
+
Thus, <math class="inline">y=\frac{vx}{\lambda}=\frac{vu}{\lambda\sqrt{1+v^{2}/\lambda^{2}}}\Longrightarrow y\left(u,v\right)=\frac{vu}{\lambda\sqrt{1+v^{2}/\lambda^{2}}}</math> .
  
<math>E\left[\mathbf{XY}\right]=\frac{\partial^{2}}{\partial\left(i\omega_{1}\right)\partial\left(i\omega_{2}\right)}\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)|_{i\omega_{1}=i\omega_{2}=0}=\left(1-i\omega_{1}\right)^{-2}\left(1-i\omega_{2}\right)^{-2}|_{i\omega_{1}=i\omega_{2}=0}=1</math>
+
Computing the Jacobian.
  
(d) Calculate <math>E\left[\mathbf{X}^{j}\mathbf{Y}^{k}\right]</math> .
+
<math class="inline">\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)} =\left|\begin{array}{ll}
 +
\frac{\partial x}{\partial u}  \frac{\partial x}{\partial v}\\
 +
\frac{\partial y}{\partial u}  \frac{\partial y}{\partial v}
 +
\end{array}\right|=\left|\begin{array}{cc}
 +
\frac{1}{\sqrt{1+v^{2}/\lambda^{2}}}  \frac{-uv}{\lambda^{2}\left(1-v^{2}/\lambda^{2}\right)^{\frac{3}{2}}}\\
 +
\frac{v}{\lambda\sqrt{1+v^{2}/\lambda^{2}}}  \frac{u}{\lambda\sqrt{1+v^{2}/\lambda^{2}}}-\frac{uv^{2}}{\lambda^{3}\left(1+v^{2}/\lambda^{2}\right)^{\frac{3}{2}}}
 +
\end{array}\right|</math><math class="inline">=\frac{1}{\sqrt{1+v^{2}/\lambda^{2}}}\left[\frac{u}{\lambda\sqrt{1+v^{2}/\lambda^{2}}}-\frac{uv^{2}}{\lambda^{3}\left(1+v^{2}/\lambda^{2}\right)^{\frac{3}{2}}}\right]-\frac{-uv^{2}}{\lambda^{3}\left(1-v^{2}/\lambda^{2}\right)^{2}}</math><math class="inline">=\frac{u}{\lambda\left(1+v^{2}/\lambda^{2}\right)}=\frac{\lambda u}{\lambda^{2}+v^{2}}\qquad\left(\geq0\text{ because u is non-negative}\right).</math>
  
<math>E\left[\mathbf{X}^{j}\mathbf{Y}^{k}\right]=\frac{\partial^{j+k}}{\partial\left(i\omega_{1}\right)^{j}\partial\left(i\omega_{2}\right)^{k}}\Phi_{\mathbf{XY}}\left(\omega_{1},\omega_{2}\right)|_{i\omega_{1}=i\omega_{2}=0}=\frac{\partial^{j+k}}{\partial\left(i\omega_{1}\right)^{j}\partial\left(i\omega_{2}\right)^{k}}\left[\left(1-i\omega_{1}\right)^{-1}\left(1-i\omega_{2}\right)^{-1}\right]|_{i\omega_{1}=i\omega_{2}=0}</math><math>=j!\left(1-i\omega_{1}\right)^{-\left(j+1\right)}k!\left(1-i\omega_{2}\right)^{-\left(k+1\right)}|_{i\omega_{1}=i\omega_{2}=0}=j!k!</math>  
+
Because <math class="inline">\mathbf{X}</math> and <math class="inline">\mathbf{Y}</math> are statistically independent
  
(e) Calculate the correlation coefficient <math>r_{\mathbf{XY}}</math>  between <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math> .
+
<math class="inline">f_{\mathbf{XY}}\left(x,y\right)=f_{\mathbf{X}}\left(x\right)f_{\mathbf{Y}}\left(y\right)=xe^{-x^{2}/2}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(x\right)\cdot\frac{1}{\sqrt{2\pi}}e^{-y^{2}/2}=\frac{x}{\sqrt{2\pi}}e^{-\left(x^{2}+y^{2}\right)/2}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(x\right).</math>  
  
<math>r_{\mathbf{XY}}=\frac{Cov\left(\mathbf{X},\mathbf{Y}\right)}{\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}}=\frac{E\left[\mathbf{XY}\right]-E\left[\mathbf{X}\right]E\left[\mathbf{Y}\right]}{\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}}=\frac{1-1\cdot1}{\sigma_{\mathbf{X}}\sigma_{\mathbf{Y}}}=0.</math>
+
Substituting these quantities, we get
 +
 
 +
<math class="inline">f_{\mathbf{UV}}\left(u,v\right)=f_{\mathbf{XY}}\left(x\left(u,v\right),y\left(u,v\right)\right)\left|\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}\right|=\frac{u}{\sqrt{1+v^{2}/\lambda^{2}}}\cdot\frac{1}{\sqrt{2\pi}}e^{-u^{2}/2}\cdot\frac{\lambda u}{\lambda^{2}+v^{2}}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(u\right)</math><math class="inline">=\frac{\lambda^{2}}{\sqrt{2\pi}}u^{2}e^{-u^{2}/2}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(u\right)\cdot\frac{1}{\left(\lambda^{2}+v^{2}\right)^{\frac{3}{2}}}.</math>
 +
 
 +
(b)
 +
 
 +
Are <math class="inline">\mathbf{U}</math>  and <math class="inline">\mathbf{V}</math>  statistically independent? Justify your answer.
 +
 
 +
<math class="inline">\mathbf{U}</math>  and <math class="inline">\mathbf{V}</math>  are statistically independent iff <math class="inline">f_{\mathbf{UV}}\left(u,v\right)=f_{\mathbf{U}}\left(u\right)f_{\mathbf{V}}\left(v\right)</math> .
 +
 
 +
Now from part (a), we see that <math class="inline">f_{\mathbf{UV}}\left(u,v\right)=c_{1}g_{1}\left(u\right)\cdot c_{2}g_{2}\left(v\right)</math> where <math class="inline">g_{1}\left(u\right)=u^{2}e^{-u^{2}/2}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(u\right)</math>  and <math class="inline">g_{2}\left(v\right)=\frac{1}{\left(\lambda^{2}+v^{2}\right)^{\frac{3}{2}}}</math>  with <math class="inline">c_{1}</math>  and <math class="inline">c_{2}</math>  selected such that <math class="inline">f_{\mathbf{U}}\left(u\right)=c_{1}g_{1}\left(u\right)</math>  and <math class="inline">f_{\mathbf{V}}\left(v\right)=c_{2}g_{2}\left(v\right)</math>  are both valid pdfs.
 +
 
 +
<math class="inline">\therefore  \mathbf{U}</math> and <math class="inline">\mathbf{V}</math>  are statistically independent.
  
 
----
 
----

Latest revision as of 12:10, 30 November 2010

Example. Two jointly distributed independent random variables

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be two jointly distributed, independent random variables. The pdf of $ \mathbf{X} $ is

$ f_{\mathbf{X}}\left(x\right)=xe^{-x^{2}/2}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(x\right) $, and $ \mathbf{Y} $ is a Gaussian random variable with mean 0 and variance 1 . Let $ \mathbf{U} $ and $ \mathbf{V} $ be two new random variables defined as $ \mathbf{U}=\sqrt{\mathbf{X}^{2}+\mathbf{Y}^{2}} $ and $ \mathbf{V}=\lambda\mathbf{Y}/\mathbf{X} $ where $ \lambda $ is a positive real number.

(a)

Find the joint pdf of $ \mathbf{U} $ and $ \mathbf{V} $ . (Direct pdf method)

$ f_{\mathbf{UV}}\left(u,v\right)=f_{\mathbf{XY}}\left(x\left(u,v\right),y\left(u,v\right)\right)\left|\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}\right| $

Solving for x and y in terms of u and v , we have $ u^{2}=x^{2}+y^{2} $ and $ v^{2}=\frac{\lambda^{2}y^{2}}{x^{2}}\Longrightarrow y^{2}=\frac{v^{2}x^{2}}{\lambda^{2}} $ .

Now, $ u^{2}=x^{2}+y^{2}=x^{2}+\frac{v^{2}x^{2}}{\lambda^{2}}=x^{2}\left(1+v^{2}/\lambda^{2}\right)\Longrightarrow x=\frac{u}{\sqrt{1+v^{2}/\lambda^{2}}}\Longrightarrow x\left(u,v\right)=\frac{u}{\sqrt{1+v^{2}/\lambda^{2}}} $ .

Thus, $ y=\frac{vx}{\lambda}=\frac{vu}{\lambda\sqrt{1+v^{2}/\lambda^{2}}}\Longrightarrow y\left(u,v\right)=\frac{vu}{\lambda\sqrt{1+v^{2}/\lambda^{2}}} $ .

Computing the Jacobian.

$ \frac{\partial\left(x,y\right)}{\partial\left(u,v\right)} =\left|\begin{array}{ll} \frac{\partial x}{\partial u} \frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u} \frac{\partial y}{\partial v} \end{array}\right|=\left|\begin{array}{cc} \frac{1}{\sqrt{1+v^{2}/\lambda^{2}}} \frac{-uv}{\lambda^{2}\left(1-v^{2}/\lambda^{2}\right)^{\frac{3}{2}}}\\ \frac{v}{\lambda\sqrt{1+v^{2}/\lambda^{2}}} \frac{u}{\lambda\sqrt{1+v^{2}/\lambda^{2}}}-\frac{uv^{2}}{\lambda^{3}\left(1+v^{2}/\lambda^{2}\right)^{\frac{3}{2}}} \end{array}\right| $$ =\frac{1}{\sqrt{1+v^{2}/\lambda^{2}}}\left[\frac{u}{\lambda\sqrt{1+v^{2}/\lambda^{2}}}-\frac{uv^{2}}{\lambda^{3}\left(1+v^{2}/\lambda^{2}\right)^{\frac{3}{2}}}\right]-\frac{-uv^{2}}{\lambda^{3}\left(1-v^{2}/\lambda^{2}\right)^{2}} $$ =\frac{u}{\lambda\left(1+v^{2}/\lambda^{2}\right)}=\frac{\lambda u}{\lambda^{2}+v^{2}}\qquad\left(\geq0\text{ because u is non-negative}\right). $

Because $ \mathbf{X} $ and $ \mathbf{Y} $ are statistically independent

$ f_{\mathbf{XY}}\left(x,y\right)=f_{\mathbf{X}}\left(x\right)f_{\mathbf{Y}}\left(y\right)=xe^{-x^{2}/2}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(x\right)\cdot\frac{1}{\sqrt{2\pi}}e^{-y^{2}/2}=\frac{x}{\sqrt{2\pi}}e^{-\left(x^{2}+y^{2}\right)/2}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(x\right). $

Substituting these quantities, we get

$ f_{\mathbf{UV}}\left(u,v\right)=f_{\mathbf{XY}}\left(x\left(u,v\right),y\left(u,v\right)\right)\left|\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}\right|=\frac{u}{\sqrt{1+v^{2}/\lambda^{2}}}\cdot\frac{1}{\sqrt{2\pi}}e^{-u^{2}/2}\cdot\frac{\lambda u}{\lambda^{2}+v^{2}}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(u\right) $$ =\frac{\lambda^{2}}{\sqrt{2\pi}}u^{2}e^{-u^{2}/2}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(u\right)\cdot\frac{1}{\left(\lambda^{2}+v^{2}\right)^{\frac{3}{2}}}. $

(b)

Are $ \mathbf{U} $ and $ \mathbf{V} $ statistically independent? Justify your answer.

$ \mathbf{U} $ and $ \mathbf{V} $ are statistically independent iff $ f_{\mathbf{UV}}\left(u,v\right)=f_{\mathbf{U}}\left(u\right)f_{\mathbf{V}}\left(v\right) $ .

Now from part (a), we see that $ f_{\mathbf{UV}}\left(u,v\right)=c_{1}g_{1}\left(u\right)\cdot c_{2}g_{2}\left(v\right) $ where $ g_{1}\left(u\right)=u^{2}e^{-u^{2}/2}\cdot\mathbf{1}_{\left[0,\infty\right)}\left(u\right) $ and $ g_{2}\left(v\right)=\frac{1}{\left(\lambda^{2}+v^{2}\right)^{\frac{3}{2}}} $ with $ c_{1} $ and $ c_{2} $ selected such that $ f_{\mathbf{U}}\left(u\right)=c_{1}g_{1}\left(u\right) $ and $ f_{\mathbf{V}}\left(v\right)=c_{2}g_{2}\left(v\right) $ are both valid pdfs.

$ \therefore \mathbf{U} $ and $ \mathbf{V} $ are statistically independent.


Back to ECE600

Back to ECE 600 Exams

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang