(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==7.12 QE 2006 August==
+
==7.12 [[ECE_PhD_Qualifying_Exams|QE]] 2006 August==
  
 
'''1'''
 
'''1'''
  
Let <math>\mathbf{U}_{n}</math>  be a sequence of independent, identically distributed zero-mean, unit-variance Gaussian random variables. The sequence <math>\mathbf{X}_{n}</math> , <math>n\geq1</math> , is given by <math>\mathbf{X}_{n}=\frac{1}{2}\mathbf{U}_{n}+\left(\frac{1}{2}\right)^{2}\mathbf{U}_{n-1}+\cdots+\left(\frac{1}{2}\right)^{n}\mathbf{U}_{1}.</math>  
+
Let <math class="inline">\mathbf{U}_{n}</math>  be a sequence of independent, identically distributed zero-mean, unit-variance Gaussian random variables. The sequence <math class="inline">\mathbf{X}_{n}</math> , <math class="inline">n\geq1</math> , is given by <math class="inline">\mathbf{X}_{n}=\frac{1}{2}\mathbf{U}_{n}+\left(\frac{1}{2}\right)^{2}\mathbf{U}_{n-1}+\cdots+\left(\frac{1}{2}\right)^{n}\mathbf{U}_{1}.</math>  
  
 
'''(a) (15 points)'''
 
'''(a) (15 points)'''
  
Find the mean and variance of <math>\mathbf{X}_{n}</math> .
+
Find the mean and variance of <math class="inline">\mathbf{X}_{n}</math> .
  
i)  Find <math>E\left[\mathbf{X}_{n}\right]</math>  
+
i)  Find <math class="inline">E\left[\mathbf{X}_{n}\right]</math>  
  
<math>\mathbf{X}_{n}=\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}\mathbf{U}_{n-k}. E\left[\mathbf{X}_{n}\right]=E\left(\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}\mathbf{U}_{n-k}\right)=\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}E\left[\mathbf{U}_{n-k}\right]=0.</math>  
+
<math class="inline">\mathbf{X}_{n}=\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}\mathbf{U}_{n-k}. E\left[\mathbf{X}_{n}\right]=E\left(\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}\mathbf{U}_{n-k}\right)=\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}E\left[\mathbf{U}_{n-k}\right]=0.</math>  
  
ii)  Find <math>E\left[\mathbf{X}_{n}^{2}\right]</math>  
+
ii)  Find <math class="inline">E\left[\mathbf{X}_{n}^{2}\right]</math>  
  
<math>E\left[\mathbf{X}_{n}^{2}\right]=E\left[\left(\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}\mathbf{U}_{n-k}\right)^{2}\right]=E\left[\sum_{k=0}^{n-1}\sum_{j=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}\left(\frac{1}{2}\right)^{j+1}\mathbf{U}_{n-k}\mathbf{U}_{n-j}\right]</math><math>=E\left[\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{2k+2}\mathbf{U}_{n-k}^{2}+\underset{k\neq j}{\sum_{k=0}^{n-1}\sum_{j=0}^{n-1}}\left(\frac{1}{2}\right)^{k+1}\left(\frac{1}{2}\right)^{j+1}\mathbf{U}_{n-k}\mathbf{U}_{n-j}\right]</math><math>=\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{2k+2}E\left[\mathbf{U}_{n-k}^{2}\right]+\underset{k\neq j}{\sum_{k=0}^{n-1}\sum_{j=0}^{n-1}}\left(\frac{1}{2}\right)^{k+1}\left(\frac{1}{2}\right)^{j+1}E\left[\mathbf{U}_{n-k}\right]E\left[\mathbf{U}_{n-j}\right]</math><math>=\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{2k+2}=\sum_{k=1}^{n}\left(\frac{1}{2}\right)^{2k}=\frac{\left(\frac{1}{2}\right)^{2}\left(1-\left(\frac{1}{2}\right)^{2n}\right)}{1-\left(\frac{1}{2}\right)^{2}}=\frac{1}{3}\left(1-\left(\frac{1}{2}\right)^{2n}\right).</math>  
+
<math class="inline">E\left[\mathbf{X}_{n}^{2}\right]=E\left[\left(\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}\mathbf{U}_{n-k}\right)^{2}\right]=E\left[\sum_{k=0}^{n-1}\sum_{j=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}\left(\frac{1}{2}\right)^{j+1}\mathbf{U}_{n-k}\mathbf{U}_{n-j}\right]</math><math class="inline">=E\left[\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{2k+2}\mathbf{U}_{n-k}^{2}+\underset{k\neq j}{\sum_{k=0}^{n-1}\sum_{j=0}^{n-1}}\left(\frac{1}{2}\right)^{k+1}\left(\frac{1}{2}\right)^{j+1}\mathbf{U}_{n-k}\mathbf{U}_{n-j}\right]</math><math class="inline">=\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{2k+2}E\left[\mathbf{U}_{n-k}^{2}\right]+\underset{k\neq j}{\sum_{k=0}^{n-1}\sum_{j=0}^{n-1}}\left(\frac{1}{2}\right)^{k+1}\left(\frac{1}{2}\right)^{j+1}E\left[\mathbf{U}_{n-k}\right]E\left[\mathbf{U}_{n-j}\right]</math><math class="inline">=\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{2k+2}=\sum_{k=1}^{n}\left(\frac{1}{2}\right)^{2k}=\frac{\left(\frac{1}{2}\right)^{2}\left(1-\left(\frac{1}{2}\right)^{2n}\right)}{1-\left(\frac{1}{2}\right)^{2}}=\frac{1}{3}\left(1-\left(\frac{1}{2}\right)^{2n}\right).</math>  
  
iii)  Find <math>Var\left[\mathbf{X}_{n}\right]</math>  
+
iii)  Find <math class="inline">Var\left[\mathbf{X}_{n}\right]</math>  
  
<math>Var\left[\mathbf{X}_{n}\right]=E\left[\mathbf{X}_{n}^{2}\right]-\left(E\left[\mathbf{X_{n}}\right]\right)^{2}=\frac{1}{3}\left(1-\left(\frac{1}{2}\right)^{2n}\right).</math>  
+
<math class="inline">Var\left[\mathbf{X}_{n}\right]=E\left[\mathbf{X}_{n}^{2}\right]-\left(E\left[\mathbf{X_{n}}\right]\right)^{2}=\frac{1}{3}\left(1-\left(\frac{1}{2}\right)^{2n}\right).</math>  
  
 
'''(b) (15 points)'''
 
'''(b) (15 points)'''
  
Find the characteristic function of <math>\mathbf{X}_{n}</math> .
+
Find the characteristic function of <math class="inline">\mathbf{X}_{n}</math> .
  
Since <math>\mathbf{U}_{n}</math>  is a sequence of i.i.d.  Gaussian random variables, <math>\mathbf{X}_{n}</math>  is a sequence of Gaussian random variables with zero mean and variance <math>\sigma_{\mathbf{X}_{n}}^{2}=\frac{1}{3}\left(1-\left(\frac{1}{2}\right)^{2n}\right)</math> . Hence the characteristic function of <math>\mathbf{X}_{n}</math>  is <math>\Phi_{\mathbf{X}_{n}}\left(\omega\right)=\exp\left(i\mu_{\mathbf{X}_{n}}\omega-\frac{1}{2}\sigma_{\mathbf{X}_{n}}^{2}\omega^{2}\right)=\exp\left(-\frac{\omega^{2}}{6}\left(1-\left(\frac{1}{2}\right)^{2n}\right)\right).</math>  
+
Since <math class="inline">\mathbf{U}_{n}</math>  is a sequence of i.i.d.  Gaussian random variables, <math class="inline">\mathbf{X}_{n}</math>  is a sequence of Gaussian random variables with zero mean and variance <math class="inline">\sigma_{\mathbf{X}_{n}}^{2}=\frac{1}{3}\left(1-\left(\frac{1}{2}\right)^{2n}\right)</math> . Hence the characteristic function of <math class="inline">\mathbf{X}_{n}</math>  is <math class="inline">\Phi_{\mathbf{X}_{n}}\left(\omega\right)=\exp\left(i\mu_{\mathbf{X}_{n}}\omega-\frac{1}{2}\sigma_{\mathbf{X}_{n}}^{2}\omega^{2}\right)=\exp\left(-\frac{\omega^{2}}{6}\left(1-\left(\frac{1}{2}\right)^{2n}\right)\right).</math>  
  
 
'''(c) (10 points)'''
 
'''(c) (10 points)'''
  
Does the sequence <math>\mathbf{X}_{n}</math>  converge in distribution? A simple yes or no answer is not sufficient. You must justify your answer.
+
Does the sequence <math class="inline">\mathbf{X}_{n}</math>  converge in distribution? A simple yes or no answer is not sufficient. You must justify your answer.
  
<math>\Phi=F_{\mathbf{X}_{n}}\left(x\right)=\int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}\sigma_{\mathbf{X}_{n}}}\exp\left(-\frac{x'^{2}}{2\sigma_{\mathbf{X}_{n}}^{2}}\right)dx'</math>  where <math>\sigma_{\mathbf{X}_{n}}^{2}=\frac{1}{3}\left(1-\left(\frac{1}{2}\right)^{2n}\right)</math> .  
+
<math class="inline">\Phi=F_{\mathbf{X}_{n}}\left(x\right)=\int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}\sigma_{\mathbf{X}_{n}}}\exp\left(-\frac{x'^{2}}{2\sigma_{\mathbf{X}_{n}}^{2}}\right)dx'</math>  where <math class="inline">\sigma_{\mathbf{X}_{n}}^{2}=\frac{1}{3}\left(1-\left(\frac{1}{2}\right)^{2n}\right)</math> .  
  
Since <math>\lim_{n\rightarrow\infty}\sigma_{\mathbf{X}_{n}}^{2}=\frac{1}{3} , \lim_{n\rightarrow\infty}F_{\mathbf{X}_{n}}=\int_{-\infty}^{x}\frac{1}{\sqrt{\frac{2\pi}{3}}}\exp\left(-\frac{x'^{2}}{2\sigma_{\mathbf{X}_{n}}^{2}}\right)dx'=F_{\mathbf{X}}\left(x\right).</math>  
+
Since <math class="inline">\lim_{n\rightarrow\infty}\sigma_{\mathbf{X}_{n}}^{2}=\frac{1}{3} , \lim_{n\rightarrow\infty}F_{\mathbf{X}_{n}}=\int_{-\infty}^{x}\frac{1}{\sqrt{\frac{2\pi}{3}}}\exp\left(-\frac{x'^{2}}{2\sigma_{\mathbf{X}_{n}}^{2}}\right)dx'=F_{\mathbf{X}}\left(x\right).</math>  
  
<math>\therefore</math>  The squance <math>\mathbf{X}_{n}</math>  converges in distribution.
+
<math class="inline">\therefore</math>  The squance <math class="inline">\mathbf{X}_{n}</math>  converges in distribution.
  
 
'''2'''
 
'''2'''
  
Let <math>\Phi</math>  be the standard normal distribution, i.e., the distribution function of a zero-mean, unit-variance Gaussian random variable. Let <math>\mathbf{X}</math>  be a normal random variable with mean <math>\mu</math>  and variance 1 . We want to find <math>E\left[\Phi\left(\mathbf{X}\right)\right]</math> .
+
Let <math class="inline">\Phi</math>  be the standard normal distribution, i.e., the distribution function of a zero-mean, unit-variance Gaussian random variable. Let <math class="inline">\mathbf{X}</math>  be a normal random variable with mean <math class="inline">\mu</math>  and variance 1 . We want to find <math class="inline">E\left[\Phi\left(\mathbf{X}\right)\right]</math> .
  
 
'''(a) (10 points)'''
 
'''(a) (10 points)'''
  
First show that <math>E\left[\Phi\left(\mathbf{X}\right)\right]=P\left(\mathbf{Z}\leq\mathbf{X}\right)</math> , where <math>\mathbf{Z}</math>  is a standard normal random variable independent of <math>\mathbf{X}</math> . Hint: Use an intermediate random variable <math>\mathbf{I}</math>  defined as  
+
First show that <math class="inline">E\left[\Phi\left(\mathbf{X}\right)\right]=P\left(\mathbf{Z}\leq\mathbf{X}\right)</math> , where <math class="inline">\mathbf{Z}</math>  is a standard normal random variable independent of <math class="inline">\mathbf{X}</math> . Hint: Use an intermediate random variable <math class="inline">\mathbf{I}</math>  defined as  
  
<math>\mathbf{I}=\left\{ \begin{array}{lll}
+
<math class="inline">\mathbf{I}=\left\{ \begin{array}{lll}
 
1 &  & \text{if }\mathbf{Z}\leq\mathbf{X}\\
 
1 &  & \text{if }\mathbf{Z}\leq\mathbf{X}\\
 
0 &  & \text{if }\mathbf{Z}>\mathbf{X}.
 
0 &  & \text{if }\mathbf{Z}>\mathbf{X}.
 
\end{array}\right.</math>  
 
\end{array}\right.</math>  
  
<math>P\left(\mathbf{Z}\leq\mathbf{X}\right)=\int_{-\infty}^{\infty}P\left(\mathbf{Z}\leq x|\mathbf{X}=x\right)\cdot f_{\mathbf{X}}\left(x\right)dx=\int_{-\infty}^{\infty}\Phi\left(x\right)\cdot f_{\mathbf{X}}\left(x\right)dx=E\left[\Phi\left(\mathbf{X}\right)\right].</math>  
+
<math class="inline">P\left(\mathbf{Z}\leq\mathbf{X}\right)=\int_{-\infty}^{\infty}P\left(\mathbf{Z}\leq x|\mathbf{X}=x\right)\cdot f_{\mathbf{X}}\left(x\right)dx=\int_{-\infty}^{\infty}\Phi\left(x\right)\cdot f_{\mathbf{X}}\left(x\right)dx=E\left[\Phi\left(\mathbf{X}\right)\right].</math>  
  
 
'''(b) (10 points)'''
 
'''(b) (10 points)'''
  
Now use the result from Part (a) to show that <math>E\left[\Phi\left(\mathbf{X}\right)\right]=\Phi\left(\frac{\mu}{\sqrt{2}}\right)</math> .
+
Now use the result from Part (a) to show that <math class="inline">E\left[\Phi\left(\mathbf{X}\right)\right]=\Phi\left(\frac{\mu}{\sqrt{2}}\right)</math> .
  
Let <math>\mathbf{Y}=\mathbf{Z}-\mathbf{X}</math> . Since <math>\mathbf{Z}</math>  and <math>\mathbf{X}</math>  are Gaussian random variables, <math>\mathbf{Y}</math>  is also a Gaussian random variable.  
+
Let <math class="inline">\mathbf{Y}=\mathbf{Z}-\mathbf{X}</math> . Since <math class="inline">\mathbf{Z}</math>  and <math class="inline">\mathbf{X}</math>  are Gaussian random variables, <math class="inline">\mathbf{Y}</math>  is also a Gaussian random variable.  
  
<math>E\left[\mathbf{Y}\right]=E\left[\mathbf{Z}\right]-E\left[\mathbf{X}\right]=-\mu.</math>  
+
<math class="inline">E\left[\mathbf{Y}\right]=E\left[\mathbf{Z}\right]-E\left[\mathbf{X}\right]=-\mu.</math>  
  
<math>Var\left[\mathbf{Y}\right]=E\left[\left(\mathbf{Y}-E\left[\mathbf{Y}\right]\right)^{2}\right]=E\left[\left(\mathbf{Z}-\left(\mathbf{X}-\mu\right)\right)^{2}\right]=E\left[\mathbf{Z}^{2}\right]+E\left[\left(\mathbf{X}-\mu\right)^{2}\right]-2E\left[\mathbf{Z}\right]E\left[\mathbf{X}-\mu\right]</math><math>=E\left[\mathbf{Z}^{2}\right]-E\left[\mathbf{Z}\right]E\left[\mathbf{X}-\mu\right]+E\left[\left(\mathbf{X}-\mu\right)^{2}\right]-E\left[\mathbf{Z}\right]E\left[\mathbf{X}-\mu\right]</math><math>=E\left[\mathbf{Z}^{2}\right]-\left(E\left[\mathbf{Z}\right]\right)^{2}+E\left[\left(\mathbf{X}-\mu\right)^{2}\right]-\left(E\left[\mathbf{X}-\mu\right]\right)^{2}=Var\left[\mathbf{Z}\right]+Var\left[\mathbf{X}\right]=2.</math>  
+
<math class="inline">Var\left[\mathbf{Y}\right]=E\left[\left(\mathbf{Y}-E\left[\mathbf{Y}\right]\right)^{2}\right]=E\left[\left(\mathbf{Z}-\left(\mathbf{X}-\mu\right)\right)^{2}\right]=E\left[\mathbf{Z}^{2}\right]+E\left[\left(\mathbf{X}-\mu\right)^{2}\right]-2E\left[\mathbf{Z}\right]E\left[\mathbf{X}-\mu\right]</math><math class="inline">=E\left[\mathbf{Z}^{2}\right]-E\left[\mathbf{Z}\right]E\left[\mathbf{X}-\mu\right]+E\left[\left(\mathbf{X}-\mu\right)^{2}\right]-E\left[\mathbf{Z}\right]E\left[\mathbf{X}-\mu\right]</math><math class="inline">=E\left[\mathbf{Z}^{2}\right]-\left(E\left[\mathbf{Z}\right]\right)^{2}+E\left[\left(\mathbf{X}-\mu\right)^{2}\right]-\left(E\left[\mathbf{X}-\mu\right]\right)^{2}=Var\left[\mathbf{Z}\right]+Var\left[\mathbf{X}\right]=2.</math>  
  
<math>E\left[\Phi\left(\mathbf{X}\right)\right]=P\left(\left\{ \mathbf{Z}\leq\mathbf{X}\right\} \right)=P\left(\left\{ \mathbf{Y}\leq0\right\} \right)=\Phi\left(\frac{0-\left(-\mu\right)}{\sqrt{2}}\right)=\Phi\left(\frac{\mu}{\sqrt{2}}\right).</math>  
+
<math class="inline">E\left[\Phi\left(\mathbf{X}\right)\right]=P\left(\left\{ \mathbf{Z}\leq\mathbf{X}\right\} \right)=P\left(\left\{ \mathbf{Y}\leq0\right\} \right)=\Phi\left(\frac{0-\left(-\mu\right)}{\sqrt{2}}\right)=\Phi\left(\frac{\mu}{\sqrt{2}}\right).</math>  
  
 
'''3 (15 points)'''
 
'''3 (15 points)'''
  
Let <math>\mathbf{Y}(t)</math>  be the output of linear system with impulse response <math>h\left(t\right)</math>  and input <math>\mathbf{X}\left(t\right)+\mathbf{N}\left(t\right)</math> , where <math>\mathbf{X}\left(t\right)</math>  and <math>\mathbf{N}\left(t\right)</math>  are jointly wide-sense stationary independent random processes. If <math>\mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)-\mathbf{Y}\left(t\right)</math> , find the power spectral density <math>S_{\mathbf{Z}}\left(\omega\right)</math>  in terms of <math>S_{\mathbf{X}}\left(\omega\right) , S_{\mathbf{N}}\left(\omega\right) , m_{\mathbf{X}}=E\left[\mathbf{X}\right] , and m_{\mathbf{Y}}=E\left[\mathbf{Y}\right]</math> .
+
Let <math class="inline">\mathbf{Y}(t)</math>  be the output of linear system with impulse response <math class="inline">h\left(t\right)</math>  and input <math class="inline">\mathbf{X}\left(t\right)+\mathbf{N}\left(t\right)</math> , where <math class="inline">\mathbf{X}\left(t\right)</math>  and <math class="inline">\mathbf{N}\left(t\right)</math>  are jointly wide-sense stationary independent random processes. If <math class="inline">\mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)-\mathbf{Y}\left(t\right)</math> , find the power spectral density <math class="inline">S_{\mathbf{Z}}\left(\omega\right)</math>  in terms of <math class="inline">S_{\mathbf{X}}\left(\omega\right) , S_{\mathbf{N}}\left(\omega\right) , m_{\mathbf{X}}=E\left[\mathbf{X}\right]</math> , and <math class="inline">m_{\mathbf{Y}}=E\left[\mathbf{Y}\right]</math> .
  
 
Solution
 
Solution
  
Let <math>\mathbf{M}\left(t\right)=\mathbf{X}\left(t\right)+\mathbf{N}\left(t\right)</math> . Since <math>\mathbf{X}\left(t\right)</math>  and <math>\mathbf{N}\left(t\right)</math>  are jointly wide-sense stationary. <math>\mathbf{M}\left(t\right)</math>  is also a wide-sense stationary random process.  
+
Let <math class="inline">\mathbf{M}\left(t\right)=\mathbf{X}\left(t\right)+\mathbf{N}\left(t\right)</math> . Since <math class="inline">\mathbf{X}\left(t\right)</math>  and <math class="inline">\mathbf{N}\left(t\right)</math>  are jointly wide-sense stationary. <math class="inline">\mathbf{M}\left(t\right)</math>  is also a wide-sense stationary random process.  
  
<math>\mathbf{Y}\left(t\right)=\mathbf{M}\left(t\right)*h\left(t\right).</math>  
+
<math class="inline">\mathbf{Y}\left(t\right)=\mathbf{M}\left(t\right)*h\left(t\right).</math>  
  
<math>R_{\mathbf{Y}}\left(\tau\right)=\left(R_{\mathbf{M}}*h*\tilde{h}\right)\left(\tau\right)\text{ where }\left(\tilde{h}\left(t\right)=h\left(-t\right)\right).</math>  
+
<math class="inline">R_{\mathbf{Y}}\left(\tau\right)=\left(R_{\mathbf{M}}*h*\tilde{h}\right)\left(\tau\right)\text{ where }\left(\tilde{h}\left(t\right)=h\left(-t\right)\right).</math>  
  
<math>R_{\mathbf{M}}\left(\tau\right)=E\left[\mathbf{M}\left(t\right)\mathbf{M}\left(t+\tau\right)\right]</math><math>=E\left[\mathbf{X}\left(t\right)\mathbf{X}\left(t+\tau\right)\right]+E\left[\mathbf{X}\left(t\right)\right]E\left[\mathbf{N}\left(t+\tau\right)\right]+E\left[\mathbf{X}\left(t+\tau\right)\right]E\left[\mathbf{N}\left(t\right)\right]+E\left[\mathbf{N}\left(t\right)\mathbf{N}\left(t+\tau\right)\right]</math><math>=R_{\mathbf{X}}\left(\tau\right)+2m_{\mathbf{X}}m_{\mathbf{N}}+R_{\mathbf{N}}\left(\tau\right)</math>
+
<math class="inline">R_{\mathbf{M}}\left(\tau\right)=E\left[\mathbf{M}\left(t\right)\mathbf{M}\left(t+\tau\right)\right]</math><math class="inline">=E\left[\mathbf{X}\left(t\right)\mathbf{X}\left(t+\tau\right)\right]+E\left[\mathbf{X}\left(t\right)\right]E\left[\mathbf{N}\left(t+\tau\right)\right]+E\left[\mathbf{X}\left(t+\tau\right)\right]E\left[\mathbf{N}\left(t\right)\right]+E\left[\mathbf{N}\left(t\right)\mathbf{N}\left(t+\tau\right)\right]</math><math class="inline">=R_{\mathbf{X}}\left(\tau\right)+2m_{\mathbf{X}}m_{\mathbf{N}}+R_{\mathbf{N}}\left(\tau\right)</math>
  
<math>R_{\mathbf{XY}}\left(\tau\right)=E\left[\mathbf{X}\left(t\right)\mathbf{Y}\left(t+\tau\right)\right]</math><math>=E\left[\mathbf{X}\left(t\right)\int_{-\infty}^{\infty}\left(\mathbf{X}\left(t+\tau-\alpha\right)+\mathbf{N}\left(t+\tau-\alpha\right)\right)h\left(\alpha\right)d\alpha\right]</math><math>=\int_{-\infty}^{\infty}\left(R_{\mathbf{X}}\left(\tau-\alpha\right)+E\left[\mathbf{X}\left(t\right)\right]E\left[\mathbf{N}\left(t+\tau-\alpha\right)\right]\right)h\left(\alpha\right)d\alpha</math><math>=R_{\mathbf{X}}\left(\tau\right)*h\left(\tau\right)+m_{\mathbf{X}}m_{\mathbf{N}}*h\left(\tau\right).</math>
+
<math class="inline">R_{\mathbf{XY}}\left(\tau\right)=E\left[\mathbf{X}\left(t\right)\mathbf{Y}\left(t+\tau\right)\right]</math><math class="inline">=E\left[\mathbf{X}\left(t\right)\int_{-\infty}^{\infty}\left(\mathbf{X}\left(t+\tau-\alpha\right)+\mathbf{N}\left(t+\tau-\alpha\right)\right)h\left(\alpha\right)d\alpha\right]</math><math class="inline">=\int_{-\infty}^{\infty}\left(R_{\mathbf{X}}\left(\tau-\alpha\right)+E\left[\mathbf{X}\left(t\right)\right]E\left[\mathbf{N}\left(t+\tau-\alpha\right)\right]\right)h\left(\alpha\right)d\alpha</math><math class="inline">=R_{\mathbf{X}}\left(\tau\right)*h\left(\tau\right)+m_{\mathbf{X}}m_{\mathbf{N}}*h\left(\tau\right).</math>
  
<math>R_{\mathbf{Z}}\left(\tau\right)=E\left[\mathbf{Z}\left(t\right)\mathbf{Z}\left(t+\tau\right)\right]=E\left[\left(\mathbf{X}\left(t\right)-\mathbf{Y}\left(t\right)\right)\left(\mathbf{X}\left(t+\tau\right)-\mathbf{Y}\left(t+\tau\right)\right)\right]</math><math>=R_{\mathbf{X}}\left(\tau\right)-R_{\mathbf{YX}}\left(\tau\right)-R_{\mathbf{XY}}\left(\tau\right)+R_{\mathbf{YY}}\left(\tau\right).</math>  
+
<math class="inline">R_{\mathbf{Z}}\left(\tau\right)=E\left[\mathbf{Z}\left(t\right)\mathbf{Z}\left(t+\tau\right)\right]=E\left[\left(\mathbf{X}\left(t\right)-\mathbf{Y}\left(t\right)\right)\left(\mathbf{X}\left(t+\tau\right)-\mathbf{Y}\left(t+\tau\right)\right)\right]</math><math class="inline">=R_{\mathbf{X}}\left(\tau\right)-R_{\mathbf{YX}}\left(\tau\right)-R_{\mathbf{XY}}\left(\tau\right)+R_{\mathbf{YY}}\left(\tau\right).</math>  
  
<math>S_{\mathbf{Z}}\left(\omega\right)=S_{\mathbf{X}}\left(\omega\right)-S_{\mathbf{YX}}\left(\omega\right)-S_{\mathbf{XY}}\left(\omega\right)+S_{\mathbf{Y}}\left(\omega\right)=S_{\mathbf{X}}\left(\omega\right)-S_{\mathbf{XY}}^{*}\left(\omega\right)-S_{\mathbf{XY}}\left(\omega\right)+S_{\mathbf{Y}}\left(\omega\right)</math><math>=S_{\mathbf{X}}\left(\omega\right)-2\Re\left\{ S_{\mathbf{XY}}\left(\omega\right)\right\} +S_{\mathbf{M}}\left(\omega\right)\Bigl|H\left(\omega\right)\Bigr|^{2}</math><math>=S_{\mathbf{X}}\left(\omega\right)-2\Re\left\{ S_{\mathbf{X}}\left(\omega\right)H\left(\omega\right)+2\pi m_{\mathbf{X}}m_{\mathbf{N}}\delta\left(\omega\right)H\left(\omega\right)\right\} +\left\{ S_{\mathbf{X}}\left(\omega\right)+2\pi m_{\mathbf{X}}m_{\mathbf{N}}\delta\left(\omega\right)+S_{\mathbf{N}}\left(\omega\right)\right\} \Bigl|H\left(\omega\right)\Bigr|^{2}</math><math>=S_{\mathbf{X}}\left(\omega\right)-2\Re\left\{ S_{\mathbf{X}}\left(\omega\right)H\left(\omega\right)+2\pi m_{\mathbf{X}}\left(m_{\mathbf{Y}}-m_{\mathbf{X}}H\left(0\right)\right)\delta\left(\omega\right)\right\} +</math><math>\left\{ S_{\mathbf{X}}\left(\omega\right)+S_{\mathbf{N}}\left(\omega\right)\right\} \Bigl|H\left(\omega\right)\Bigr|^{2}+2\pi m_{\mathbf{X}}\left(m_{\mathbf{Y}}-m_{\mathbf{X}}H\left(0\right)\right)H\left(0\right)\delta\left(\omega\right).</math>  
+
<math class="inline">S_{\mathbf{Z}}\left(\omega\right)=S_{\mathbf{X}}\left(\omega\right)-S_{\mathbf{YX}}\left(\omega\right)-S_{\mathbf{XY}}\left(\omega\right)+S_{\mathbf{Y}}\left(\omega\right)=S_{\mathbf{X}}\left(\omega\right)-S_{\mathbf{XY}}^{*}\left(\omega\right)-S_{\mathbf{XY}}\left(\omega\right)+S_{\mathbf{Y}}\left(\omega\right)</math><math class="inline">=S_{\mathbf{X}}\left(\omega\right)-2\Re\left\{ S_{\mathbf{XY}}\left(\omega\right)\right\} +S_{\mathbf{M}}\left(\omega\right)\Bigl|H\left(\omega\right)\Bigr|^{2}</math><math class="inline">=S_{\mathbf{X}}\left(\omega\right)-2\Re\left\{ S_{\mathbf{X}}\left(\omega\right)H\left(\omega\right)+2\pi m_{\mathbf{X}}m_{\mathbf{N}}\delta\left(\omega\right)H\left(\omega\right)\right\} +\left\{ S_{\mathbf{X}}\left(\omega\right)+2\pi m_{\mathbf{X}}m_{\mathbf{N}}\delta\left(\omega\right)+S_{\mathbf{N}}\left(\omega\right)\right\} \Bigl|H\left(\omega\right)\Bigr|^{2}</math><math class="inline">=S_{\mathbf{X}}\left(\omega\right)-2\Re\left\{ S_{\mathbf{X}}\left(\omega\right)H\left(\omega\right)+2\pi m_{\mathbf{X}}\left(m_{\mathbf{Y}}-m_{\mathbf{X}}H\left(0\right)\right)\delta\left(\omega\right)\right\} +</math><math class="inline">\left\{ S_{\mathbf{X}}\left(\omega\right)+S_{\mathbf{N}}\left(\omega\right)\right\} \Bigl|H\left(\omega\right)\Bigr|^{2}+2\pi m_{\mathbf{X}}\left(m_{\mathbf{Y}}-m_{\mathbf{X}}H\left(0\right)\right)H\left(0\right)\delta\left(\omega\right).</math>  
  
<math>\because m_{\mathbf{Y}}=m_{\mathbf{M}}*h\left(t\right)=\int_{-\infty}^{\infty}\left(m_{\mathbf{X}}+m_{\mathbf{N}}\right)h\left(t\right)dt=\left(m_{\mathbf{X}}+m_{\mathbf{N}}\right)H\left(0\right)\Rightarrow m_{\mathbf{N}}H\left(0\right)=m_{\mathbf{Y}}-m_{\mathbf{X}}H\left(0\right).</math>  
+
<math class="inline">\because m_{\mathbf{Y}}=m_{\mathbf{M}}*h\left(t\right)=\int_{-\infty}^{\infty}\left(m_{\mathbf{X}}+m_{\mathbf{N}}\right)h\left(t\right)dt=\left(m_{\mathbf{X}}+m_{\mathbf{N}}\right)H\left(0\right)\Rightarrow m_{\mathbf{N}}H\left(0\right)=m_{\mathbf{Y}}-m_{\mathbf{X}}H\left(0\right).</math>  
  
 
'''4'''
 
'''4'''
  
Suppose customer orders arrive according to an i.i.d.  Bernoulli random process <math>\mathbf{X}_{n}</math>  with parameter <math>p</math> . Thus, an order arrives at time index <math>n</math>  (i.e., <math>\mathbf{X}_{n}=1</math> ) with probability <math>p</math> ; if an order does not arrive at time index <math>n</math> , then <math>\mathbf{X}_{n}=0</math> . When an order arrives, its size is an exponential random variable with parameter <math>\lambda</math> . Let <math>\mathbf{S}_{n}</math>  be the total size of all orders up to time <math>n</math> .
+
Suppose customer orders arrive according to an i.i.d.  Bernoulli random process <math class="inline">\mathbf{X}_{n}</math>  with parameter <math class="inline">p</math> . Thus, an order arrives at time index <math class="inline">n</math>  (i.e., <math class="inline">\mathbf{X}_{n}=1</math> ) with probability <math class="inline">p</math> ; if an order does not arrive at time index <math class="inline">n</math> , then <math class="inline">\mathbf{X}_{n}=0</math> . When an order arrives, its size is an exponential random variable with parameter <math class="inline">\lambda</math> . Let <math class="inline">\mathbf{S}_{n}</math>  be the total size of all orders up to time <math class="inline">n</math> .
  
 
'''(a) (20 points)'''
 
'''(a) (20 points)'''
  
Find the mean and autocorrelation function of <math>\mathbf{S}_{n}</math> .
+
Find the mean and autocorrelation function of <math class="inline">\mathbf{S}_{n}</math> .
  
Let <math>\mathbf{Y}_{n}</math>  be the size of an order at time index <math>n</math> , then <math>\mathbf{Y}_{n}</math>  is a sequence of i.i.d.  exponential random variables.  
+
Let <math class="inline">\mathbf{Y}_{n}</math>  be the size of an order at time index <math class="inline">n</math> , then <math class="inline">\mathbf{Y}_{n}</math>  is a sequence of i.i.d.  exponential random variables.  
  
<math>\mathbf{S}_{n}=\sum_{k=1}^{n}\mathbf{X}_{n}\mathbf{Y}_{n}.</math>  
+
<math class="inline">\mathbf{S}_{n}=\sum_{k=1}^{n}\mathbf{X}_{n}\mathbf{Y}_{n}.</math>  
  
<math>E\left[\mathbf{S}_{n}\right]=\sum_{k=1}^{n}E\left[\mathbf{X}_{n}\right]E\left[\mathbf{Y}_{n}\right]=\sum_{k=1}^{n}p\cdot\frac{1}{\lambda}=\frac{np}{\lambda}.</math>  
+
<math class="inline">E\left[\mathbf{S}_{n}\right]=\sum_{k=1}^{n}E\left[\mathbf{X}_{n}\right]E\left[\mathbf{Y}_{n}\right]=\sum_{k=1}^{n}p\cdot\frac{1}{\lambda}=\frac{np}{\lambda}.</math>  
  
<math>R_{\mathbf{S}}\left(n,m\right)=E\left[\mathbf{S}_{n}\mathbf{S}_{m}\right]=\sum_{k=1}^{n}\sum_{l=1}^{m}E\left[\mathbf{X}_{n}\right]E\left[\mathbf{X}_{m}\right]E\left[\mathbf{Y}_{n}\right]E\left[\mathbf{Y}_{m}\right]=\sum_{k=1}^{n}\sum_{l=1}^{m}\frac{p^{2}}{\lambda^{2}}=nm\frac{p^{2}}{\lambda^{2}}.</math>  
+
<math class="inline">R_{\mathbf{S}}\left(n,m\right)=E\left[\mathbf{S}_{n}\mathbf{S}_{m}\right]=\sum_{k=1}^{n}\sum_{l=1}^{m}E\left[\mathbf{X}_{n}\right]E\left[\mathbf{X}_{m}\right]E\left[\mathbf{Y}_{n}\right]E\left[\mathbf{Y}_{m}\right]=\sum_{k=1}^{n}\sum_{l=1}^{m}\frac{p^{2}}{\lambda^{2}}=nm\frac{p^{2}}{\lambda^{2}}.</math>  
  
 
'''(b) (5 points)'''
 
'''(b) (5 points)'''
  
Is <math>\mathbf{S}_{n}</math>  a stationary random process? Explain.
+
Is <math class="inline">\mathbf{S}_{n}</math>  a stationary random process? Explain.
  
• Approach 1: <math>\mathbf{S}_{n}</math>  is not a stationary random process since <math>R_{\mathbf{S}}\left(n,m\right)</math>  does not depend on only <math>m-n</math> .
+
• Approach 1: <math class="inline">\mathbf{S}_{n}</math>  is not a stationary random process since <math class="inline">R_{\mathbf{S}}\left(n,m\right)</math>  does not depend on only <math class="inline">m-n</math> .
  
• Approach 2: <math>\mathbf{S}_{n}</math>  is not a stationary random process since <math>E\left[\mathbf{S}_{n}\right]</math>  is not constant.
+
• Approach 2: <math class="inline">\mathbf{S}_{n}</math>  is not a stationary random process since <math class="inline">E\left[\mathbf{S}_{n}\right]</math>  is not constant.
  
 
----
 
----
 
[[ECE600|Back to ECE600]]
 
[[ECE600|Back to ECE600]]
  
[[ECE 600 QE|Back to ECE 600 QE]]
+
[[ECE 600 QE|Back to my ECE 600 QE page]]
 +
 
 +
[[ECE_PhD_Qualifying_Exams|Back to the general ECE PHD QE page]] (for problem discussion)

Latest revision as of 07:29, 27 June 2012

7.12 QE 2006 August

1

Let $ \mathbf{U}_{n} $ be a sequence of independent, identically distributed zero-mean, unit-variance Gaussian random variables. The sequence $ \mathbf{X}_{n} $ , $ n\geq1 $ , is given by $ \mathbf{X}_{n}=\frac{1}{2}\mathbf{U}_{n}+\left(\frac{1}{2}\right)^{2}\mathbf{U}_{n-1}+\cdots+\left(\frac{1}{2}\right)^{n}\mathbf{U}_{1}. $

(a) (15 points)

Find the mean and variance of $ \mathbf{X}_{n} $ .

i) Find $ E\left[\mathbf{X}_{n}\right] $

$ \mathbf{X}_{n}=\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}\mathbf{U}_{n-k}. E\left[\mathbf{X}_{n}\right]=E\left(\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}\mathbf{U}_{n-k}\right)=\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}E\left[\mathbf{U}_{n-k}\right]=0. $

ii) Find $ E\left[\mathbf{X}_{n}^{2}\right] $

$ E\left[\mathbf{X}_{n}^{2}\right]=E\left[\left(\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}\mathbf{U}_{n-k}\right)^{2}\right]=E\left[\sum_{k=0}^{n-1}\sum_{j=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}\left(\frac{1}{2}\right)^{j+1}\mathbf{U}_{n-k}\mathbf{U}_{n-j}\right] $$ =E\left[\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{2k+2}\mathbf{U}_{n-k}^{2}+\underset{k\neq j}{\sum_{k=0}^{n-1}\sum_{j=0}^{n-1}}\left(\frac{1}{2}\right)^{k+1}\left(\frac{1}{2}\right)^{j+1}\mathbf{U}_{n-k}\mathbf{U}_{n-j}\right] $$ =\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{2k+2}E\left[\mathbf{U}_{n-k}^{2}\right]+\underset{k\neq j}{\sum_{k=0}^{n-1}\sum_{j=0}^{n-1}}\left(\frac{1}{2}\right)^{k+1}\left(\frac{1}{2}\right)^{j+1}E\left[\mathbf{U}_{n-k}\right]E\left[\mathbf{U}_{n-j}\right] $$ =\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{2k+2}=\sum_{k=1}^{n}\left(\frac{1}{2}\right)^{2k}=\frac{\left(\frac{1}{2}\right)^{2}\left(1-\left(\frac{1}{2}\right)^{2n}\right)}{1-\left(\frac{1}{2}\right)^{2}}=\frac{1}{3}\left(1-\left(\frac{1}{2}\right)^{2n}\right). $

iii) Find $ Var\left[\mathbf{X}_{n}\right] $

$ Var\left[\mathbf{X}_{n}\right]=E\left[\mathbf{X}_{n}^{2}\right]-\left(E\left[\mathbf{X_{n}}\right]\right)^{2}=\frac{1}{3}\left(1-\left(\frac{1}{2}\right)^{2n}\right). $

(b) (15 points)

Find the characteristic function of $ \mathbf{X}_{n} $ .

Since $ \mathbf{U}_{n} $ is a sequence of i.i.d. Gaussian random variables, $ \mathbf{X}_{n} $ is a sequence of Gaussian random variables with zero mean and variance $ \sigma_{\mathbf{X}_{n}}^{2}=\frac{1}{3}\left(1-\left(\frac{1}{2}\right)^{2n}\right) $ . Hence the characteristic function of $ \mathbf{X}_{n} $ is $ \Phi_{\mathbf{X}_{n}}\left(\omega\right)=\exp\left(i\mu_{\mathbf{X}_{n}}\omega-\frac{1}{2}\sigma_{\mathbf{X}_{n}}^{2}\omega^{2}\right)=\exp\left(-\frac{\omega^{2}}{6}\left(1-\left(\frac{1}{2}\right)^{2n}\right)\right). $

(c) (10 points)

Does the sequence $ \mathbf{X}_{n} $ converge in distribution? A simple yes or no answer is not sufficient. You must justify your answer.

$ \Phi=F_{\mathbf{X}_{n}}\left(x\right)=\int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}\sigma_{\mathbf{X}_{n}}}\exp\left(-\frac{x'^{2}}{2\sigma_{\mathbf{X}_{n}}^{2}}\right)dx' $ where $ \sigma_{\mathbf{X}_{n}}^{2}=\frac{1}{3}\left(1-\left(\frac{1}{2}\right)^{2n}\right) $ .

Since $ \lim_{n\rightarrow\infty}\sigma_{\mathbf{X}_{n}}^{2}=\frac{1}{3} , \lim_{n\rightarrow\infty}F_{\mathbf{X}_{n}}=\int_{-\infty}^{x}\frac{1}{\sqrt{\frac{2\pi}{3}}}\exp\left(-\frac{x'^{2}}{2\sigma_{\mathbf{X}_{n}}^{2}}\right)dx'=F_{\mathbf{X}}\left(x\right). $

$ \therefore $ The squance $ \mathbf{X}_{n} $ converges in distribution.

2

Let $ \Phi $ be the standard normal distribution, i.e., the distribution function of a zero-mean, unit-variance Gaussian random variable. Let $ \mathbf{X} $ be a normal random variable with mean $ \mu $ and variance 1 . We want to find $ E\left[\Phi\left(\mathbf{X}\right)\right] $ .

(a) (10 points)

First show that $ E\left[\Phi\left(\mathbf{X}\right)\right]=P\left(\mathbf{Z}\leq\mathbf{X}\right) $ , where $ \mathbf{Z} $ is a standard normal random variable independent of $ \mathbf{X} $ . Hint: Use an intermediate random variable $ \mathbf{I} $ defined as

$ \mathbf{I}=\left\{ \begin{array}{lll} 1 & & \text{if }\mathbf{Z}\leq\mathbf{X}\\ 0 & & \text{if }\mathbf{Z}>\mathbf{X}. \end{array}\right. $

$ P\left(\mathbf{Z}\leq\mathbf{X}\right)=\int_{-\infty}^{\infty}P\left(\mathbf{Z}\leq x|\mathbf{X}=x\right)\cdot f_{\mathbf{X}}\left(x\right)dx=\int_{-\infty}^{\infty}\Phi\left(x\right)\cdot f_{\mathbf{X}}\left(x\right)dx=E\left[\Phi\left(\mathbf{X}\right)\right]. $

(b) (10 points)

Now use the result from Part (a) to show that $ E\left[\Phi\left(\mathbf{X}\right)\right]=\Phi\left(\frac{\mu}{\sqrt{2}}\right) $ .

Let $ \mathbf{Y}=\mathbf{Z}-\mathbf{X} $ . Since $ \mathbf{Z} $ and $ \mathbf{X} $ are Gaussian random variables, $ \mathbf{Y} $ is also a Gaussian random variable.

$ E\left[\mathbf{Y}\right]=E\left[\mathbf{Z}\right]-E\left[\mathbf{X}\right]=-\mu. $

$ Var\left[\mathbf{Y}\right]=E\left[\left(\mathbf{Y}-E\left[\mathbf{Y}\right]\right)^{2}\right]=E\left[\left(\mathbf{Z}-\left(\mathbf{X}-\mu\right)\right)^{2}\right]=E\left[\mathbf{Z}^{2}\right]+E\left[\left(\mathbf{X}-\mu\right)^{2}\right]-2E\left[\mathbf{Z}\right]E\left[\mathbf{X}-\mu\right] $$ =E\left[\mathbf{Z}^{2}\right]-E\left[\mathbf{Z}\right]E\left[\mathbf{X}-\mu\right]+E\left[\left(\mathbf{X}-\mu\right)^{2}\right]-E\left[\mathbf{Z}\right]E\left[\mathbf{X}-\mu\right] $$ =E\left[\mathbf{Z}^{2}\right]-\left(E\left[\mathbf{Z}\right]\right)^{2}+E\left[\left(\mathbf{X}-\mu\right)^{2}\right]-\left(E\left[\mathbf{X}-\mu\right]\right)^{2}=Var\left[\mathbf{Z}\right]+Var\left[\mathbf{X}\right]=2. $

$ E\left[\Phi\left(\mathbf{X}\right)\right]=P\left(\left\{ \mathbf{Z}\leq\mathbf{X}\right\} \right)=P\left(\left\{ \mathbf{Y}\leq0\right\} \right)=\Phi\left(\frac{0-\left(-\mu\right)}{\sqrt{2}}\right)=\Phi\left(\frac{\mu}{\sqrt{2}}\right). $

3 (15 points)

Let $ \mathbf{Y}(t) $ be the output of linear system with impulse response $ h\left(t\right) $ and input $ \mathbf{X}\left(t\right)+\mathbf{N}\left(t\right) $ , where $ \mathbf{X}\left(t\right) $ and $ \mathbf{N}\left(t\right) $ are jointly wide-sense stationary independent random processes. If $ \mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)-\mathbf{Y}\left(t\right) $ , find the power spectral density $ S_{\mathbf{Z}}\left(\omega\right) $ in terms of $ S_{\mathbf{X}}\left(\omega\right) , S_{\mathbf{N}}\left(\omega\right) , m_{\mathbf{X}}=E\left[\mathbf{X}\right] $ , and $ m_{\mathbf{Y}}=E\left[\mathbf{Y}\right] $ .

Solution

Let $ \mathbf{M}\left(t\right)=\mathbf{X}\left(t\right)+\mathbf{N}\left(t\right) $ . Since $ \mathbf{X}\left(t\right) $ and $ \mathbf{N}\left(t\right) $ are jointly wide-sense stationary. $ \mathbf{M}\left(t\right) $ is also a wide-sense stationary random process.

$ \mathbf{Y}\left(t\right)=\mathbf{M}\left(t\right)*h\left(t\right). $

$ R_{\mathbf{Y}}\left(\tau\right)=\left(R_{\mathbf{M}}*h*\tilde{h}\right)\left(\tau\right)\text{ where }\left(\tilde{h}\left(t\right)=h\left(-t\right)\right). $

$ R_{\mathbf{M}}\left(\tau\right)=E\left[\mathbf{M}\left(t\right)\mathbf{M}\left(t+\tau\right)\right] $$ =E\left[\mathbf{X}\left(t\right)\mathbf{X}\left(t+\tau\right)\right]+E\left[\mathbf{X}\left(t\right)\right]E\left[\mathbf{N}\left(t+\tau\right)\right]+E\left[\mathbf{X}\left(t+\tau\right)\right]E\left[\mathbf{N}\left(t\right)\right]+E\left[\mathbf{N}\left(t\right)\mathbf{N}\left(t+\tau\right)\right] $$ =R_{\mathbf{X}}\left(\tau\right)+2m_{\mathbf{X}}m_{\mathbf{N}}+R_{\mathbf{N}}\left(\tau\right) $

$ R_{\mathbf{XY}}\left(\tau\right)=E\left[\mathbf{X}\left(t\right)\mathbf{Y}\left(t+\tau\right)\right] $$ =E\left[\mathbf{X}\left(t\right)\int_{-\infty}^{\infty}\left(\mathbf{X}\left(t+\tau-\alpha\right)+\mathbf{N}\left(t+\tau-\alpha\right)\right)h\left(\alpha\right)d\alpha\right] $$ =\int_{-\infty}^{\infty}\left(R_{\mathbf{X}}\left(\tau-\alpha\right)+E\left[\mathbf{X}\left(t\right)\right]E\left[\mathbf{N}\left(t+\tau-\alpha\right)\right]\right)h\left(\alpha\right)d\alpha $$ =R_{\mathbf{X}}\left(\tau\right)*h\left(\tau\right)+m_{\mathbf{X}}m_{\mathbf{N}}*h\left(\tau\right). $

$ R_{\mathbf{Z}}\left(\tau\right)=E\left[\mathbf{Z}\left(t\right)\mathbf{Z}\left(t+\tau\right)\right]=E\left[\left(\mathbf{X}\left(t\right)-\mathbf{Y}\left(t\right)\right)\left(\mathbf{X}\left(t+\tau\right)-\mathbf{Y}\left(t+\tau\right)\right)\right] $$ =R_{\mathbf{X}}\left(\tau\right)-R_{\mathbf{YX}}\left(\tau\right)-R_{\mathbf{XY}}\left(\tau\right)+R_{\mathbf{YY}}\left(\tau\right). $

$ S_{\mathbf{Z}}\left(\omega\right)=S_{\mathbf{X}}\left(\omega\right)-S_{\mathbf{YX}}\left(\omega\right)-S_{\mathbf{XY}}\left(\omega\right)+S_{\mathbf{Y}}\left(\omega\right)=S_{\mathbf{X}}\left(\omega\right)-S_{\mathbf{XY}}^{*}\left(\omega\right)-S_{\mathbf{XY}}\left(\omega\right)+S_{\mathbf{Y}}\left(\omega\right) $$ =S_{\mathbf{X}}\left(\omega\right)-2\Re\left\{ S_{\mathbf{XY}}\left(\omega\right)\right\} +S_{\mathbf{M}}\left(\omega\right)\Bigl|H\left(\omega\right)\Bigr|^{2} $$ =S_{\mathbf{X}}\left(\omega\right)-2\Re\left\{ S_{\mathbf{X}}\left(\omega\right)H\left(\omega\right)+2\pi m_{\mathbf{X}}m_{\mathbf{N}}\delta\left(\omega\right)H\left(\omega\right)\right\} +\left\{ S_{\mathbf{X}}\left(\omega\right)+2\pi m_{\mathbf{X}}m_{\mathbf{N}}\delta\left(\omega\right)+S_{\mathbf{N}}\left(\omega\right)\right\} \Bigl|H\left(\omega\right)\Bigr|^{2} $$ =S_{\mathbf{X}}\left(\omega\right)-2\Re\left\{ S_{\mathbf{X}}\left(\omega\right)H\left(\omega\right)+2\pi m_{\mathbf{X}}\left(m_{\mathbf{Y}}-m_{\mathbf{X}}H\left(0\right)\right)\delta\left(\omega\right)\right\} + $$ \left\{ S_{\mathbf{X}}\left(\omega\right)+S_{\mathbf{N}}\left(\omega\right)\right\} \Bigl|H\left(\omega\right)\Bigr|^{2}+2\pi m_{\mathbf{X}}\left(m_{\mathbf{Y}}-m_{\mathbf{X}}H\left(0\right)\right)H\left(0\right)\delta\left(\omega\right). $

$ \because m_{\mathbf{Y}}=m_{\mathbf{M}}*h\left(t\right)=\int_{-\infty}^{\infty}\left(m_{\mathbf{X}}+m_{\mathbf{N}}\right)h\left(t\right)dt=\left(m_{\mathbf{X}}+m_{\mathbf{N}}\right)H\left(0\right)\Rightarrow m_{\mathbf{N}}H\left(0\right)=m_{\mathbf{Y}}-m_{\mathbf{X}}H\left(0\right). $

4

Suppose customer orders arrive according to an i.i.d. Bernoulli random process $ \mathbf{X}_{n} $ with parameter $ p $ . Thus, an order arrives at time index $ n $ (i.e., $ \mathbf{X}_{n}=1 $ ) with probability $ p $ ; if an order does not arrive at time index $ n $ , then $ \mathbf{X}_{n}=0 $ . When an order arrives, its size is an exponential random variable with parameter $ \lambda $ . Let $ \mathbf{S}_{n} $ be the total size of all orders up to time $ n $ .

(a) (20 points)

Find the mean and autocorrelation function of $ \mathbf{S}_{n} $ .

Let $ \mathbf{Y}_{n} $ be the size of an order at time index $ n $ , then $ \mathbf{Y}_{n} $ is a sequence of i.i.d. exponential random variables.

$ \mathbf{S}_{n}=\sum_{k=1}^{n}\mathbf{X}_{n}\mathbf{Y}_{n}. $

$ E\left[\mathbf{S}_{n}\right]=\sum_{k=1}^{n}E\left[\mathbf{X}_{n}\right]E\left[\mathbf{Y}_{n}\right]=\sum_{k=1}^{n}p\cdot\frac{1}{\lambda}=\frac{np}{\lambda}. $

$ R_{\mathbf{S}}\left(n,m\right)=E\left[\mathbf{S}_{n}\mathbf{S}_{m}\right]=\sum_{k=1}^{n}\sum_{l=1}^{m}E\left[\mathbf{X}_{n}\right]E\left[\mathbf{X}_{m}\right]E\left[\mathbf{Y}_{n}\right]E\left[\mathbf{Y}_{m}\right]=\sum_{k=1}^{n}\sum_{l=1}^{m}\frac{p^{2}}{\lambda^{2}}=nm\frac{p^{2}}{\lambda^{2}}. $

(b) (5 points)

Is $ \mathbf{S}_{n} $ a stationary random process? Explain.

• Approach 1: $ \mathbf{S}_{n} $ is not a stationary random process since $ R_{\mathbf{S}}\left(n,m\right) $ does not depend on only $ m-n $ .

• Approach 2: $ \mathbf{S}_{n} $ is not a stationary random process since $ E\left[\mathbf{S}_{n}\right] $ is not constant.


Back to ECE600

Back to my ECE 600 QE page

Back to the general ECE PHD QE page (for problem discussion)

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood