(One intermediate revision by one other user not shown)
Line 3: Line 3:
 
! style="background-color: rgb(228, 188, 126); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Table of Taylor Series
 
! style="background-color: rgb(228, 188, 126); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Table of Taylor Series
 
|-
 
|-
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Definition of Definite Integral
+
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Taylor series of functions of one variable
 
|-
 
|-
|<math> \int_{a}^{b} f ( x ) d x = \lim_{n \to \infty} { f ( a ) \Delta x + f ( a + \Delta x ) \Delta x + f ( a + 2 \Delta x ) + \cdot \cdot \cdot + f ( a + ( n - 1 ) \Delta x ) \Delta x }</math>
+
|<math> f(x) \ = \ f(a) \ + \ f'(a)(x-a) \ + \ \frac{f''(a)(x-a)^2}{2!} \ + \ \cdot \cdot \cdot \ + \ \frac{f^{(n-1)} (a)(x-a)^{n-1}}{(n-1)!} \ + \ R_n </math>
 
|-
 
|-
 +
| Rn is the rest of the first n terms, and can be placed in one of two forms:
 +
|-
 +
|<math> \text{ Rest of Lagrange} \qquad R_n \ = \  \frac{f^{(n)}(\zeta)(x-a)^n}{n!}</math>
 +
|-
 +
|<math> \text{ Rest of Cauchy} \qquad R_n \ = \  \frac{f^{(n)}(\zeta)(x-\zeta)^{n-1}(x-a)}{(n-1)!}</math>
 +
|-
 +
|<math> \text{z value, which may be different in two residues, located between a and x. the result is valid if f(x) has continuous derivatives at least up to order n } </math>
 +
|-
 +
|<math> \text {if } \lim_{n \to \infty}R_n \ = \ 0,\ \text{ the infinite series obtained is called the taylor series of f(x) near x = a }</math>
 +
|-
 +
| <math> \text { if a =0 , it is often called Mac Laurin series }</math>
 +
|-
 +
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Binomial Series
 +
|-
 +
|<math></math>
 +
|-
 +
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Expansion Series of Exponential functions and logarithms
 +
|-
 +
|<math></math>
 +
|-
 +
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Expansion Series of Circular Functions
 +
|-
 +
|<math></math>
 +
|-
 +
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Expansion Series of Hyperbolic Functions
 +
|-
 +
|<math></math>
 +
|-
 +
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Various Series
 +
|-
 +
|<math></math>
 +
|-
 +
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | series of reciprocal power series
  
 
+
|-
 +
|<math></math>
 +
|-
 +
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Taylor Series of  Functions of two variables
 +
|-
 +
|<math></math>
 +
|-
 
|}
 
|}
 +
 
----
 
----
  

Latest revision as of 12:42, 22 November 2010

Table of Taylor Series
Taylor series of functions of one variable
$ f(x) \ = \ f(a) \ + \ f'(a)(x-a) \ + \ \frac{f''(a)(x-a)^2}{2!} \ + \ \cdot \cdot \cdot \ + \ \frac{f^{(n-1)} (a)(x-a)^{n-1}}{(n-1)!} \ + \ R_n $
Rn is the rest of the first n terms, and can be placed in one of two forms:
$ \text{ Rest of Lagrange} \qquad R_n \ = \ \frac{f^{(n)}(\zeta)(x-a)^n}{n!} $
$ \text{ Rest of Cauchy} \qquad R_n \ = \ \frac{f^{(n)}(\zeta)(x-\zeta)^{n-1}(x-a)}{(n-1)!} $
$ \text{z value, which may be different in two residues, located between a and x. the result is valid if f(x) has continuous derivatives at least up to order n } $
$ \text {if } \lim_{n \to \infty}R_n \ = \ 0,\ \text{ the infinite series obtained is called the taylor series of f(x) near x = a } $
$ \text { if a =0 , it is often called Mac Laurin series } $
Binomial Series
Expansion Series of Exponential functions and logarithms
Expansion Series of Circular Functions
Expansion Series of Hyperbolic Functions
Various Series
series of reciprocal power series
Taylor Series of Functions of two variables

Back to Collective Table

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal