(New page: =7.3 QE 2001 August= '''1. (10 Points)''' Consider the following random experiment: A fair coin is repeatedly tossed until the same outcome (H or T) appears twice in a row. (a) What is...)
 
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
=7.3 QE 2001 August=
+
=7.3 [[ECE_PhD_Qualifying_Exams|QE]] 2001 August=
  
 
'''1. (10 Points)'''
 
'''1. (10 Points)'''
Line 11: Line 11:
 
Let N  be the number of toss until the same outcome appears twice in a row.
 
Let N  be the number of toss until the same outcome appears twice in a row.
  
\begin{center}
+
{| border = "1"
\begin{tabular}{|c|c|c|c|c|}
+
!<math class="inline">N</math>th
\hline
+
!<math class="inline">\left(N - 1\right)</math>th
$N$th & $\left(N-1\right)$th & $\left(N-2\right)$th & $\left(N-3\right)$th & $\cdots$\tabularnewline
+
!<math class="inline">\left(N - 2\right)</math>th
\hline
+
!<math class="inline">\left(N - 3\right)</math>th
\hline
+
!<math class="inline">\cdots</math>
H & H & T & H & $\cdots$\tabularnewline
+
|-
\hline
+
|-
T & T & H & T & $\cdots$\tabularnewline
+
|H
\hline
+
|H
\end{tabular}
+
|T
\par\end{center}
+
|H
 +
|<math class="inline">\cdots</math>
 +
|-
 +
|T
 +
|T
 +
|H
 +
|T
 +
|<math class="inline">\cdots</math>
 +
|}
  
<math>P\left(\left\{ N=n\right\} \right)=\frac{2}{2^{n}}=\frac{1}{2^{n-1}}\text{ for }n\geq2.</math>
 
  
<math>P\left(\left\{ N\leq7\right\} \right)=\sum_{k=2}^{7}\frac{1}{2^{k-1}}=\sum_{k=1}^{6}\left(\frac{1}{2}\right)^{k}=\frac{\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{6}\right)}{1-\frac{1}{2}}=1-\frac{1}{64}=\frac{63}{64}.</math>  
+
<math class="inline">P\left(\left\{ N=n\right\} \right)=\frac{2}{2^{n}}=\frac{1}{2^{n-1}}\text{ for }n\geq2.</math>
 +
 
 +
<math class="inline">P\left(\left\{ N\leq7\right\} \right)=\sum_{k=2}^{7}\frac{1}{2^{k-1}}=\sum_{k=1}^{6}\left(\frac{1}{2}\right)^{k}=\frac{\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{6}\right)}{1-\frac{1}{2}}=1-\frac{1}{64}=\frac{63}{64}.</math>  
  
 
'''(b)'''
 
'''(b)'''
Line 32: Line 41:
 
What is the probability that this experiment terminates with an even number of coin tosses?
 
What is the probability that this experiment terminates with an even number of coin tosses?
  
<math>P\left(\left\{ N\text{ is even}\right\} \right)=\sum_{k=1}^{\infty}\frac{1}{2^{2k-1}}=2\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k}=2\cdot\frac{\frac{1}{4}}{1-\frac{1}{4}}=2\cdot\frac{1}{3}=\frac{2}{3}.</math>  
+
<math class="inline">P\left(\left\{ N\text{ is even}\right\} \right)=\sum_{k=1}^{\infty}\frac{1}{2^{2k-1}}=2\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k}=2\cdot\frac{\frac{1}{4}}{1-\frac{1}{4}}=2\cdot\frac{1}{3}=\frac{2}{3}.</math>  
  
 
'''2. (25 Points)'''
 
'''2. (25 Points)'''
  
Let <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  be independent Poisson random variables with mean <math>\lambda</math>  and <math>\mu</math> , respectively. Let <math>\mathbf{Z}</math>  be a new random variable defined as <math>\mathbf{Z}=\mathbf{X}+\mathbf{Y}.</math>  
+
Let <math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  be independent Poisson random variables with mean <math class="inline">\lambda</math>  and <math class="inline">\mu</math> , respectively. Let <math class="inline">\mathbf{Z}</math>  be a new random variable defined as <math class="inline">\mathbf{Z}=\mathbf{X}+\mathbf{Y}.</math>  
  
 
Note
 
Note
  
This problem is identical to the example [CS1AdditionOfTwoIndependentPoissonRV].
+
This problem is identical to the example: [[ECE 600 Exams Addition of two independent Poisson random variables|Addition of two independent Poisson random variables]].
  
 
'''(a)'''  
 
'''(a)'''  
  
Find the probability mass function (pmf) of <math>\mathbf{Z}</math> .
+
Find the probability mass function (pmf) of <math class="inline">\mathbf{Z}</math> .
  
 
'''(b)'''
 
'''(b)'''
  
Find the conditional probability mass function (pmf) of <math>\mathbf{X}</math>  conditional on the event <math>\left\{ \mathbf{Z}=n\right\}</math>  . Identify the type of pmf that this is, and fully specify its parameters.
+
Find the conditional probability mass function (pmf) of <math class="inline">\mathbf{X}</math>  conditional on the event <math class="inline">\left\{ \mathbf{Z}=n\right\}</math>  . Identify the type of pmf that this is, and fully specify its parameters.
  
 
'''3. (30 Points)'''
 
'''3. (30 Points)'''
  
Let <math>\mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots</math>  be a sequence of random variables that are not necessarily statistically independent, but that each have identical mean <math>\mu</math>  and variance <math>\sigma^{2}</math> . Let <math>\mathbf{Y}_{1},\cdots,\mathbf{Y}_{n},\cdots</math>  be a sequence of random variable with <math>\mathbf{Y}_{n}=\frac{1}{n}\sum_{k=1}^{n}\mathbf{X}_{k}.</math>  
+
Let <math class="inline">\mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots</math>  be a sequence of random variables that are not necessarily statistically independent, but that each have identical mean <math class="inline">\mu</math>  and variance <math class="inline">\sigma^{2}</math> . Let <math class="inline">\mathbf{Y}_{1},\cdots,\mathbf{Y}_{n},\cdots</math>  be a sequence of random variable with <math class="inline">\mathbf{Y}_{n}=\frac{1}{n}\sum_{k=1}^{n}\mathbf{X}_{k}.</math>  
  
 
'''(a)'''
 
'''(a)'''
  
Given that <math>\mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots</math>  are uncorrelated, determine whether or not <math>\left\{ \mathbf{Y}_{n}\right\}</math>  converges to <math>\mu</math>  in the mean square sense.
+
Given that <math class="inline">\mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots</math>  are uncorrelated, determine whether or not <math class="inline">\left\{ \mathbf{Y}_{n}\right\}</math>  converges to <math class="inline">\mu</math>  in the mean square sense.
  
<math>E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\mathbf{Y}_{n}^{2}\right]-2E\left[\mathbf{Y}_{n}\right]\mu+\mu^{2}.</math>  
+
<math class="inline">E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\mathbf{Y}_{n}^{2}\right]-2E\left[\mathbf{Y}_{n}\right]\mu+\mu^{2}.</math>  
  
<math>E\left[\mathbf{Y}_{n}\right]=\frac{1}{n}\sum_{k=1}^{n}E\left[\mathbf{X}_{k}\right]=\mu.</math>  
+
<math class="inline">E\left[\mathbf{Y}_{n}\right]=\frac{1}{n}\sum_{k=1}^{n}E\left[\mathbf{X}_{k}\right]=\mu.</math>  
  
<math>E\left[\mathbf{Y}_{n}^{2}\right]</math>  
+
<math class="inline">E\left[\mathbf{Y}_{n}^{2}\right]=E\left[\frac{1}{n^{2}}\sum_{k=1}^{n}\sum_{l=1}^{n}\mathbf{X}_{k}\mathbf{X}_{l}\right]=\frac{1}{n^{2}}\sum_{k=1}^{n}\sum_{l=1}^{n}E\left[\mathbf{X}_{k}\mathbf{X}_{l}\right]</math><math class="inline">=\frac{1}{n^{2}}\sum_{k=1}^{n}E\left[\mathbf{X}_{k}^{2}\right]+\frac{1}{n^{2}}\underset{k\neq l}{\sum_{k=1}^{n}\sum_{l=1}^{n}}E\left[\mathbf{X}_{k}\right]E\left[\mathbf{X}_{l}\right]</math><math class="inline">=\frac{1}{n}\left(\mu^{2}+\sigma^{2}\right)+\frac{n\left(n-1\right)}{n^{2}}\mu^{2}=\frac{1}{n}\mu^{2}+\frac{1}{n}\sigma^{2}+\mu^{2}-\frac{1}{n}\mu^{2}</math><math class="inline">=\frac{\sigma^{2}}{n}+\mu^{2}.</math>  
  
<math>E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\mathbf{Y}_{n}^{2}\right]-2E\left[\mathbf{Y}_{n}\right]\mu+\mu^{2}=\frac{\sigma^{2}}{n}+\mu^{2}-2\mu\cdot\mu+\mu^{2}=\frac{\sigma^{2}}{n}. \lim_{n\rightarrow\infty}E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=\lim_{n\rightarrow\infty}\left(\frac{\sigma^{2}}{n}\right)=0.</math>  
+
<math class="inline">E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\mathbf{Y}_{n}^{2}\right]-2E\left[\mathbf{Y}_{n}\right]\mu+\mu^{2}=\frac{\sigma^{2}}{n}+\mu^{2}-2\mu\cdot\mu+\mu^{2}=\frac{\sigma^{2}}{n}.</math>
 +
<math class="inline">\lim_{n\rightarrow\infty}E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=\lim_{n\rightarrow\infty}\left(\frac{\sigma^{2}}{n}\right)=0.</math>  
  
 
Another approach
 
Another approach
  
E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]  
+
<math class="inline">E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\left|\frac{1}{n}\sum_{k=1}^{n}\left(\mathbf{X}_{k}-\mu\right)\right|^{2}\right]=\frac{1}{n^{2}}\sum_{k=1}^{n}\sum_{l=1}^{n}E\left[\left(\mathbf{X}_{k}-\mu\right)\left(\mathbf{X}_{l}-\mu\right)\right]</math><math class="inline">=\frac{1}{n^{2}}\sum_{k=1}^{n}E\left[\left(\mathbf{X}_{k}-\mu\right)^{2}\right]+\frac{1}{n^{2}}\underset{k\neq l}{\sum_{k=1}^{n}\sum_{l=1}^{n}}E\left[\mathbf{X}_{k}-\mu\right]E\left[\mathbf{X}_{l}-\mu\right]</math><math class="inline">=\frac{1}{n^{2}}\cdot n\cdot\sigma^{2}+\frac{1}{n^{2}}\cdot n\left(n-1\right)\cdot0^{2}=\frac{\sigma^{2}}{n}.</math>
  
\lim_{n\rightarrow\infty}E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=\lim_{n\rightarrow\infty}\left(\frac{\sigma^{2}}{n}\right)=0.  
+
<math class="inline">\lim_{n\rightarrow\infty}E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=\lim_{n\rightarrow\infty}\left(\frac{\sigma^{2}}{n}\right)=0.</math>
  
 
(b)
 
(b)
  
Given that the covariance between \mathbf{X}_{j}  and \mathbf{X}_{k}  is given by cov\left(\mathbf{X}_{j},\mathbf{X}_{k}\right)=\begin{cases}
+
Given that the covariance between <math class="inline">\mathbf{X}_{j}</math> and <math class="inline">\mathbf{X}_{k}</math> is given by  
 +
<br>
 +
<math class="inline">cov\left(\mathbf{X}_{j},\mathbf{X}_{k}\right)=\begin{cases}
 
\begin{array}{lll}
 
\begin{array}{lll}
\sigma^{2} &  & \textnormal{, for }j=k\\
+
\sigma^{2}   \text{, for }j=k\\
r\sigma^{2} &  & \textnormal{, for }\left|j-k\right|=1\\
+
r\sigma^{2}   \text{, for }\left|j-k\right|=1\\
0 &  & \textnormal{, elsewhere, }
+
0   \text{, elsewhere, }
\end{array}\end{cases} where -1\leq r\leq1 , determine whether or not \left\{ \mathbf{Y}_{n}\right\}  converges to \mu  in the mean square sense.
+
\end{array}\end{cases}</math>
 +
<br>
 +
where <math class="inline">-1\leq r\leq1</math> , determine whether or not <math class="inline">\left\{ \mathbf{Y}_{n}\right\}</math>   converges to <math class="inline">\mu</math> in the mean square sense.
  
E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]  
+
<math class="inline">E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\left|\frac{1}{n}\sum_{k=1}^{n}\left(\mathbf{X}_{k}-\mu\right)\right|^{2}\right]=\frac{1}{n^{2}}\sum_{k=1}^{n}\sum_{l=1}^{n}E\left[\left(\mathbf{X}_{k}-\mu\right)\left(\mathbf{X}_{l}-\mu\right)\right]</math><math class="inline">=\frac{1}{n^{2}}\sum_{k=1}^{n}E\left[\left(\mathbf{X}_{k}-\mu\right)^{2}\right]+\frac{1}{n^{2}}\underset{k\neq l}{\sum_{k=1}^{n}\sum_{l=1}^{n}}E\left[\left(\mathbf{X}_{k}-\mu\right)\left(\mathbf{X}_{l}-\mu\right)\right]</math><math class="inline">=\frac{1}{n}\sigma^{2}+\frac{2\left(n-1\right)}{n^{2}}r\sigma^{2}.</math>
  
\lim_{n\rightarrow\infty}E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=\lim_{n\rightarrow\infty}\left(\frac{1}{n}\sigma^{2}+\frac{2\left(n-1\right)}{n^{2}}r\sigma^{2}\right)=0.  
+
<math class="inline">\lim_{n\rightarrow\infty}E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=\lim_{n\rightarrow\infty}\left(\frac{1}{n}\sigma^{2}+\frac{2\left(n-1\right)}{n^{2}}r\sigma^{2}\right)=0.</math>
  
Thus, \mathbf{Y}_{n}  converges in the mean square sense to \mu .
+
Thus, <math class="inline">\mathbf{Y}_{n}</math> converges in the mean square sense to <math class="inline">\mu</math> .
  
 
4. (35 Points)
 
4. (35 Points)
  
Let \left\{ t_{k}\right\}  be the set of Poisson points corresponding to a homogeneous Poisson process with parameters \lambda  on the real line such that if \mathbf{N}\left(t_{1},t_{2}\right)  is defined as the number of points in the interval \left[t_{1},t_{2}\right) , then P\left(\left\{ N\left(t_{1},t_{2}\right)=k\right\} \right)=\frac{\left[\lambda\left(t_{2}-t_{1}\right)\right]^{k}e^{-\lambda\left(t_{2}-t_{1}\right)}}{k!}\;,\qquad k=0,1,2,\cdots,\; t_{2}>t_{1}\geq0. Let \mathbf{X}\left(t\right)=\mathbf{N}\left(0,t\right)  be the Poisson counting process for t>0  (note that \mathbf{X}\left(0\right)=0 ).
+
Let <math class="inline">\left\{ t_{k}\right\}</math>   be the set of Poisson points corresponding to a homogeneous Poisson process with parameters <math class="inline">\lambda</math> on the real line such that if <math class="inline">\mathbf{N}\left(t_{1},t_{2}\right)</math> is defined as the number of points in the interval <math class="inline">\left[t_{1},t_{2}\right)</math> , then <math class="inline">P\left(\left\{ N\left(t_{1},t_{2}\right)=k\right\} \right)=\frac{\left[\lambda\left(t_{2}-t_{1}\right)\right]^{k}e^{-\lambda\left(t_{2}-t_{1}\right)}}{k!}\;,\qquad k=0,1,2,\cdots,\; t_{2}>t_{1}\geq0. Let \mathbf{X}\left(t\right)=\mathbf{N}\left(0,t\right)</math> be the Poisson counting process for <math class="inline">t>0</math> (note that <math class="inline">\mathbf{X}\left(0\right)=0</math> ).
  
 
(a)
 
(a)
  
Find the (first order) characteristic function of \mathbf{X}\left(t\right) .
+
Find the (first order) characteristic function of <math class="inline">\mathbf{X}\left(t\right)</math> .
  
\Phi_{\mathbf{X}}\left(\omega\right)=E\left[e^{i\omega\mathbf{X}}\right]=\sum_{k=0}^{\infty}e^{i\omega k}\frac{\left(\lambda t\right)^{k}e^{-\lambda t}}{k!}=e^{-\lambda t}\sum_{k=0}^{\infty}\frac{\left(\lambda te^{i\omega}\right)^{k}}{k!}=e^{-\lambda t}e^{\lambda te^{i\omega}}=e^{-\lambda t\left(1-e^{i\omega}\right)}.  
+
<math class="inline">\Phi_{\mathbf{X}}\left(\omega\right)=E\left[e^{i\omega\mathbf{X}}\right]=\sum_{k=0}^{\infty}e^{i\omega k}\frac{\left(\lambda t\right)^{k}e^{-\lambda t}}{k!}=e^{-\lambda t}\sum_{k=0}^{\infty}\frac{\left(\lambda te^{i\omega}\right)^{k}}{k!}=e^{-\lambda t}e^{\lambda te^{i\omega}}=e^{-\lambda t\left(1-e^{i\omega}\right)}.</math>
  
 
(b)
 
(b)
  
Find the mean and variance of \mathbf{X}\left(t\right) .
+
Find the mean and variance of <math class="inline">\mathbf{X}\left(t\right)</math> .
  
E\left[\mathbf{X}\left(t\right)\right]  
+
<math class="inline">E\left[\mathbf{X}\left(t\right)\right]=\frac{d}{di\omega}\Phi_{\mathbf{X}}\left(\omega\right)\biggl|_{i\omega=0}=\frac{d}{di\omega}e^{-\lambda t}e^{\lambda te^{i\omega}}\biggl|_{i\omega=0}=e^{-\lambda t}\cdot\frac{d}{di\omega}e^{\lambda te^{i\omega}}\biggl|_{i\omega=0}</math><math class="inline">=e^{-\lambda t}\cdot e^{\lambda te^{i\omega}}\cdot\lambda te^{i\omega}\biggl|_{i\omega=0}=e^{-\lambda t}\cdot e^{\lambda t}\cdot\lambda t=\lambda t.</math>
  
E\left[\mathbf{X}^{2}\left(t\right)\right]  
+
<math class="inline">E\left[\mathbf{X}^{2}\left(t\right)\right]=\frac{d}{d\left(i\omega\right)^{2}}\Phi_{\mathbf{X}}\left(\omega\right)\biggl|_{i\omega=0}=\frac{d}{di\omega}\lambda te^{-\lambda t}e^{\lambda te^{i\omega}}e^{i\omega}\biggl|_{i\omega=0}</math><math class="inline">=\lambda te^{-\lambda t}\cdot\frac{d}{di\omega}e^{\lambda te^{i\omega}}e^{i\omega}\biggl|_{i\omega=0}</math><math class="inline">=\lambda te^{-\lambda t}\left(e^{\lambda te^{i\omega}}\lambda te^{i\omega}e^{i\omega}+e^{\lambda te^{i\omega}}e^{i\omega}\right)\biggl|_{i\omega=0}</math><math class="inline">=\lambda te^{-\lambda t}\left(\lambda te^{\lambda te^{i\omega}}e^{2i\omega}+e^{\lambda te^{i\omega}}e^{i\omega}\right)\biggl|_{i\omega=0}=\lambda te^{-\lambda t}\left(\lambda te^{\lambda t}+e^{\lambda t}\right)</math><math class="inline">=\lambda t\left(\lambda t+1\right)=\left(\lambda t\right)^{2}+\lambda t.</math>
  
Var\left[\mathbf{X}\left(t\right)\right]=E\left[\mathbf{X}^{2}\left(t\right)\right]-\left(E\left[\mathbf{X}\left(t\right)\right]\right)^{2}=\left(\lambda t\right)^{2}+\lambda t-\left(\lambda t\right)^{2}=\lambda t.  
+
<math class="inline">Var\left[\mathbf{X}\left(t\right)\right]=E\left[\mathbf{X}^{2}\left(t\right)\right]-\left(E\left[\mathbf{X}\left(t\right)\right]\right)^{2}=\left(\lambda t\right)^{2}+\lambda t-\left(\lambda t\right)^{2}=\lambda t.</math>
  
 
(c)
 
(c)
  
Deriven an expression for the autocorrelation function of \mathbf{X}\left(t\right) .
+
Deriven an expression for the autocorrelation function of <math class="inline">\mathbf{X}\left(t\right)</math> .
  
R_{\mathbf{XX}}\left(t_{1},t_{2}\right)  
+
<math class="inline">R_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math>
  
 
(d)
 
(d)
  
Assuming that t_{2}>t_{1} , find an expression for P\left(\left\{ \mathbf{X}\left(t_{1}\right)=m\right\} \cap\left\{ \mathbf{X}\left(t_{2}\right)=n\right\} \right) , for all m=0,1,2,\cdots  and n=0,1,2,\cdots .
+
Assuming that <math class="inline">t_{2}>t_{1}</math> , find an expression for <math class="inline">P\left(\left\{ \mathbf{X}\left(t_{1}\right)=m\right\} \cap\left\{ \mathbf{X}\left(t_{2}\right)=n\right\} \right)</math> , for all <math class="inline">m=0,1,2,\cdots</math> and <math class="inline">n=0,1,2,\cdots</math> .
  
P\left(\left\{ \mathbf{X}\left(t_{1}\right)=m\right\} \cap\left\{ \mathbf{X}\left(t_{2}\right)=n\right\} \right)   
+
<math class="inline">P\left(\left\{ \mathbf{X}\left(t_{1}\right)=m\right\} \cap\left\{ \mathbf{X}\left(t_{2}\right)=n\right\} \right)</math>  
  
 
----
 
----
 
[[ECE600|Back to ECE600]]
 
[[ECE600|Back to ECE600]]
  
[[ECE 600 QE|Back to ECE 600 QE]]
+
[[ECE 600 QE|Back to my ECE 600 QE page]]
 +
 
 +
[[ECE_PhD_Qualifying_Exams|Back to the general ECE PHD QE page]] (for problem discussion)

Latest revision as of 07:33, 27 June 2012

7.3 QE 2001 August

1. (10 Points)

Consider the following random experiment: A fair coin is repeatedly tossed until the same outcome (H or T) appears twice in a row.

(a)

What is the probability that this experiment terminates on or before the seventh coin toss?

Let N be the number of toss until the same outcome appears twice in a row.

$ N $th $ \left(N - 1\right) $th $ \left(N - 2\right) $th $ \left(N - 3\right) $th $ \cdots $
H H T H $ \cdots $
T T H T $ \cdots $


$ P\left(\left\{ N=n\right\} \right)=\frac{2}{2^{n}}=\frac{1}{2^{n-1}}\text{ for }n\geq2. $

$ P\left(\left\{ N\leq7\right\} \right)=\sum_{k=2}^{7}\frac{1}{2^{k-1}}=\sum_{k=1}^{6}\left(\frac{1}{2}\right)^{k}=\frac{\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{6}\right)}{1-\frac{1}{2}}=1-\frac{1}{64}=\frac{63}{64}. $

(b)

What is the probability that this experiment terminates with an even number of coin tosses?

$ P\left(\left\{ N\text{ is even}\right\} \right)=\sum_{k=1}^{\infty}\frac{1}{2^{2k-1}}=2\sum_{k=1}^{\infty}\left(\frac{1}{4}\right)^{k}=2\cdot\frac{\frac{1}{4}}{1-\frac{1}{4}}=2\cdot\frac{1}{3}=\frac{2}{3}. $

2. (25 Points)

Let $ \mathbf{X} $ and $ \mathbf{Y} $ be independent Poisson random variables with mean $ \lambda $ and $ \mu $ , respectively. Let $ \mathbf{Z} $ be a new random variable defined as $ \mathbf{Z}=\mathbf{X}+\mathbf{Y}. $

Note

This problem is identical to the example: Addition of two independent Poisson random variables.

(a)

Find the probability mass function (pmf) of $ \mathbf{Z} $ .

(b)

Find the conditional probability mass function (pmf) of $ \mathbf{X} $ conditional on the event $ \left\{ \mathbf{Z}=n\right\} $ . Identify the type of pmf that this is, and fully specify its parameters.

3. (30 Points)

Let $ \mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots $ be a sequence of random variables that are not necessarily statistically independent, but that each have identical mean $ \mu $ and variance $ \sigma^{2} $ . Let $ \mathbf{Y}_{1},\cdots,\mathbf{Y}_{n},\cdots $ be a sequence of random variable with $ \mathbf{Y}_{n}=\frac{1}{n}\sum_{k=1}^{n}\mathbf{X}_{k}. $

(a)

Given that $ \mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots $ are uncorrelated, determine whether or not $ \left\{ \mathbf{Y}_{n}\right\} $ converges to $ \mu $ in the mean square sense.

$ E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\mathbf{Y}_{n}^{2}\right]-2E\left[\mathbf{Y}_{n}\right]\mu+\mu^{2}. $

$ E\left[\mathbf{Y}_{n}\right]=\frac{1}{n}\sum_{k=1}^{n}E\left[\mathbf{X}_{k}\right]=\mu. $

$ E\left[\mathbf{Y}_{n}^{2}\right]=E\left[\frac{1}{n^{2}}\sum_{k=1}^{n}\sum_{l=1}^{n}\mathbf{X}_{k}\mathbf{X}_{l}\right]=\frac{1}{n^{2}}\sum_{k=1}^{n}\sum_{l=1}^{n}E\left[\mathbf{X}_{k}\mathbf{X}_{l}\right] $$ =\frac{1}{n^{2}}\sum_{k=1}^{n}E\left[\mathbf{X}_{k}^{2}\right]+\frac{1}{n^{2}}\underset{k\neq l}{\sum_{k=1}^{n}\sum_{l=1}^{n}}E\left[\mathbf{X}_{k}\right]E\left[\mathbf{X}_{l}\right] $$ =\frac{1}{n}\left(\mu^{2}+\sigma^{2}\right)+\frac{n\left(n-1\right)}{n^{2}}\mu^{2}=\frac{1}{n}\mu^{2}+\frac{1}{n}\sigma^{2}+\mu^{2}-\frac{1}{n}\mu^{2} $$ =\frac{\sigma^{2}}{n}+\mu^{2}. $

$ E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\mathbf{Y}_{n}^{2}\right]-2E\left[\mathbf{Y}_{n}\right]\mu+\mu^{2}=\frac{\sigma^{2}}{n}+\mu^{2}-2\mu\cdot\mu+\mu^{2}=\frac{\sigma^{2}}{n}. $ $ \lim_{n\rightarrow\infty}E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=\lim_{n\rightarrow\infty}\left(\frac{\sigma^{2}}{n}\right)=0. $

Another approach

$ E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\left|\frac{1}{n}\sum_{k=1}^{n}\left(\mathbf{X}_{k}-\mu\right)\right|^{2}\right]=\frac{1}{n^{2}}\sum_{k=1}^{n}\sum_{l=1}^{n}E\left[\left(\mathbf{X}_{k}-\mu\right)\left(\mathbf{X}_{l}-\mu\right)\right] $$ =\frac{1}{n^{2}}\sum_{k=1}^{n}E\left[\left(\mathbf{X}_{k}-\mu\right)^{2}\right]+\frac{1}{n^{2}}\underset{k\neq l}{\sum_{k=1}^{n}\sum_{l=1}^{n}}E\left[\mathbf{X}_{k}-\mu\right]E\left[\mathbf{X}_{l}-\mu\right] $$ =\frac{1}{n^{2}}\cdot n\cdot\sigma^{2}+\frac{1}{n^{2}}\cdot n\left(n-1\right)\cdot0^{2}=\frac{\sigma^{2}}{n}. $

$ \lim_{n\rightarrow\infty}E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=\lim_{n\rightarrow\infty}\left(\frac{\sigma^{2}}{n}\right)=0. $

(b)

Given that the covariance between $ \mathbf{X}_{j} $ and $ \mathbf{X}_{k} $ is given by
$ cov\left(\mathbf{X}_{j},\mathbf{X}_{k}\right)=\begin{cases} \begin{array}{lll} \sigma^{2} \text{, for }j=k\\ r\sigma^{2} \text{, for }\left|j-k\right|=1\\ 0 \text{, elsewhere, } \end{array}\end{cases} $
where $ -1\leq r\leq1 $ , determine whether or not $ \left\{ \mathbf{Y}_{n}\right\} $ converges to $ \mu $ in the mean square sense.

$ E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=E\left[\left|\frac{1}{n}\sum_{k=1}^{n}\left(\mathbf{X}_{k}-\mu\right)\right|^{2}\right]=\frac{1}{n^{2}}\sum_{k=1}^{n}\sum_{l=1}^{n}E\left[\left(\mathbf{X}_{k}-\mu\right)\left(\mathbf{X}_{l}-\mu\right)\right] $$ =\frac{1}{n^{2}}\sum_{k=1}^{n}E\left[\left(\mathbf{X}_{k}-\mu\right)^{2}\right]+\frac{1}{n^{2}}\underset{k\neq l}{\sum_{k=1}^{n}\sum_{l=1}^{n}}E\left[\left(\mathbf{X}_{k}-\mu\right)\left(\mathbf{X}_{l}-\mu\right)\right] $$ =\frac{1}{n}\sigma^{2}+\frac{2\left(n-1\right)}{n^{2}}r\sigma^{2}. $

$ \lim_{n\rightarrow\infty}E\left[\left|\mathbf{Y}_{n}-\mu\right|^{2}\right]=\lim_{n\rightarrow\infty}\left(\frac{1}{n}\sigma^{2}+\frac{2\left(n-1\right)}{n^{2}}r\sigma^{2}\right)=0. $

Thus, $ \mathbf{Y}_{n} $ converges in the mean square sense to $ \mu $ .

4. (35 Points)

Let $ \left\{ t_{k}\right\} $ be the set of Poisson points corresponding to a homogeneous Poisson process with parameters $ \lambda $ on the real line such that if $ \mathbf{N}\left(t_{1},t_{2}\right) $ is defined as the number of points in the interval $ \left[t_{1},t_{2}\right) $ , then $ P\left(\left\{ N\left(t_{1},t_{2}\right)=k\right\} \right)=\frac{\left[\lambda\left(t_{2}-t_{1}\right)\right]^{k}e^{-\lambda\left(t_{2}-t_{1}\right)}}{k!}\;,\qquad k=0,1,2,\cdots,\; t_{2}>t_{1}\geq0. Let \mathbf{X}\left(t\right)=\mathbf{N}\left(0,t\right) $ be the Poisson counting process for $ t>0 $ (note that $ \mathbf{X}\left(0\right)=0 $ ).

(a)

Find the (first order) characteristic function of $ \mathbf{X}\left(t\right) $ .

$ \Phi_{\mathbf{X}}\left(\omega\right)=E\left[e^{i\omega\mathbf{X}}\right]=\sum_{k=0}^{\infty}e^{i\omega k}\frac{\left(\lambda t\right)^{k}e^{-\lambda t}}{k!}=e^{-\lambda t}\sum_{k=0}^{\infty}\frac{\left(\lambda te^{i\omega}\right)^{k}}{k!}=e^{-\lambda t}e^{\lambda te^{i\omega}}=e^{-\lambda t\left(1-e^{i\omega}\right)}. $

(b)

Find the mean and variance of $ \mathbf{X}\left(t\right) $ .

$ E\left[\mathbf{X}\left(t\right)\right]=\frac{d}{di\omega}\Phi_{\mathbf{X}}\left(\omega\right)\biggl|_{i\omega=0}=\frac{d}{di\omega}e^{-\lambda t}e^{\lambda te^{i\omega}}\biggl|_{i\omega=0}=e^{-\lambda t}\cdot\frac{d}{di\omega}e^{\lambda te^{i\omega}}\biggl|_{i\omega=0} $$ =e^{-\lambda t}\cdot e^{\lambda te^{i\omega}}\cdot\lambda te^{i\omega}\biggl|_{i\omega=0}=e^{-\lambda t}\cdot e^{\lambda t}\cdot\lambda t=\lambda t. $

$ E\left[\mathbf{X}^{2}\left(t\right)\right]=\frac{d}{d\left(i\omega\right)^{2}}\Phi_{\mathbf{X}}\left(\omega\right)\biggl|_{i\omega=0}=\frac{d}{di\omega}\lambda te^{-\lambda t}e^{\lambda te^{i\omega}}e^{i\omega}\biggl|_{i\omega=0} $$ =\lambda te^{-\lambda t}\cdot\frac{d}{di\omega}e^{\lambda te^{i\omega}}e^{i\omega}\biggl|_{i\omega=0} $$ =\lambda te^{-\lambda t}\left(e^{\lambda te^{i\omega}}\lambda te^{i\omega}e^{i\omega}+e^{\lambda te^{i\omega}}e^{i\omega}\right)\biggl|_{i\omega=0} $$ =\lambda te^{-\lambda t}\left(\lambda te^{\lambda te^{i\omega}}e^{2i\omega}+e^{\lambda te^{i\omega}}e^{i\omega}\right)\biggl|_{i\omega=0}=\lambda te^{-\lambda t}\left(\lambda te^{\lambda t}+e^{\lambda t}\right) $$ =\lambda t\left(\lambda t+1\right)=\left(\lambda t\right)^{2}+\lambda t. $

$ Var\left[\mathbf{X}\left(t\right)\right]=E\left[\mathbf{X}^{2}\left(t\right)\right]-\left(E\left[\mathbf{X}\left(t\right)\right]\right)^{2}=\left(\lambda t\right)^{2}+\lambda t-\left(\lambda t\right)^{2}=\lambda t. $

(c)

Deriven an expression for the autocorrelation function of $ \mathbf{X}\left(t\right) $ .

$ R_{\mathbf{XX}}\left(t_{1},t_{2}\right) $

(d)

Assuming that $ t_{2}>t_{1} $ , find an expression for $ P\left(\left\{ \mathbf{X}\left(t_{1}\right)=m\right\} \cap\left\{ \mathbf{X}\left(t_{2}\right)=n\right\} \right) $ , for all $ m=0,1,2,\cdots $ and $ n=0,1,2,\cdots $ .

$ P\left(\left\{ \mathbf{X}\left(t_{1}\right)=m\right\} \cap\left\{ \mathbf{X}\left(t_{2}\right)=n\right\} \right) $


Back to ECE600

Back to my ECE 600 QE page

Back to the general ECE PHD QE page (for problem discussion)

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett