(2 intermediate revisions by one other user not shown)
Line 7: Line 7:
 
Answer
 
Answer
  
You can see the proof of Chebyshev inequality [CS1ChebyshevInequality].
+
You can see the proof of the [[ECE 600 Chebyshev Inequality|Chebyshev Inequality]].
  
 
'''2.'''
 
'''2.'''
Line 13: Line 13:
 
'''(a) (7 pts)'''
 
'''(a) (7 pts)'''
  
Let <math>A</math>  and <math>B</math>  be statistically independent events in the same probability space. Are <math>A</math>  and <math>B^{C}</math>  independent? (You must prove your result).
+
Let <math class="inline">A</math>  and <math class="inline">B</math>  be statistically independent events in the same probability space. Are <math class="inline">A</math>  and <math class="inline">B^{C}</math>  independent? (You must prove your result).
  
<math>P\left(A\right)=P\left(A\cap\left(B\cup B^{C}\right)\right)=P\left(\left(A\cap B\right)\cup\left(A\cap B^{C}\right)\right)=P\left(A\cap B\right)+P\left(A\cap B^{C}\right)=P\left(A\right)P\left(B\right)+P\left(A\cap B^{C}\right).</math>  
+
<math class="inline">P\left(A\right)=P\left(A\cap\left(B\cup B^{C}\right)\right)=P\left(\left(A\cap B\right)\cup\left(A\cap B^{C}\right)\right)=P\left(A\cap B\right)+P\left(A\cap B^{C}\right)=P\left(A\right)P\left(B\right)+P\left(A\cap B^{C}\right).</math>  
  
<math>P\left(A\cap B^{C}\right)=P\left(A\right)-P\left(A\right)P\left(B\right)=P\left(A\right)\left(1-P\left(B\right)\right)=P\left(A\right)P\left(B^{C}\right).</math>  
+
<math class="inline">P\left(A\cap B^{C}\right)=P\left(A\right)-P\left(A\right)P\left(B\right)=P\left(A\right)\left(1-P\left(B\right)\right)=P\left(A\right)P\left(B^{C}\right).</math>  
  
<math>\therefore A\text{ and }B^{C}\text{ are independent. }</math>  
+
<math class="inline">\therefore A\text{ and }B^{C}\text{ are independent. }</math>  
  
 
'''(b) (7 pts)'''
 
'''(b) (7 pts)'''
Line 25: Line 25:
 
Can two events be statistically independent and mutually exclusive? (You must derive the conditions on A  and B  for this to be true or not.)
 
Can two events be statistically independent and mutually exclusive? (You must derive the conditions on A  and B  for this to be true or not.)
  
If <math>P\left(A\right)=0</math>  or <math>P\left(B\right)=0</math> , then A  and B  are statistically independent and mutually exclusive. Prove this:
+
If <math class="inline">P\left(A\right)=0</math>  or <math class="inline">P\left(B\right)=0</math> , then A  and B  are statistically independent and mutually exclusive. Prove this:
  
Without loss of generality, suppose that <math>P\left(A\right)=0</math> . <math>0=P\left(A\right)\geq P\left(A\cap B\right)\geq0\Longrightarrow P\left(A\cap B\right)=0\qquad\therefore\text{mutually excclusive}.</math>  
+
Without loss of generality, suppose that <math class="inline">P\left(A\right)=0</math> . <math class="inline">0=P\left(A\right)\geq P\left(A\cap B\right)\geq0\Longrightarrow P\left(A\cap B\right)=0\qquad\therefore\text{mutually excclusive}.</math>  
  
<math>P\left(A\cap B\right)=0=P\left(A\right)P\left(B\right)\qquad\therefore\text{statistically independent.}</math>  
+
<math class="inline">P\left(A\cap B\right)=0=P\left(A\right)P\left(B\right)\qquad\therefore\text{statistically independent.}</math>  
  
 
'''(c) (6 pts)'''
 
'''(c) (6 pts)'''
Line 37: Line 37:
 
'''Answer'''
 
'''Answer'''
  
You can see the Axioms of Probability [CS1AxiomsOfProbability].
+
You can see the [[ECE 600 Prerequisites Probability Space|Axioms of Probability]].
  
 
'''3. (20 pts)'''
 
'''3. (20 pts)'''
  
Let the <math>\mathbf{X}_{1},\mathbf{X}_{2},\cdots</math>  be a sequence of random variables that converge in mean square to the random variable <math>\mathbf{X}</math> . Does the sequence also converge to <math>\mathbf{X}</math>  in probability? (A simple yes or no answer is not acceptable, you must derive the result.)
+
Let the <math class="inline">\mathbf{X}_{1},\mathbf{X}_{2},\cdots</math>  be a sequence of random variables that converge in mean square to the random variable <math class="inline">\mathbf{X}</math> . Does the sequence also converge to <math class="inline">\mathbf{X}</math>  in probability? (A simple yes or no answer is not acceptable, you must derive the result.)
  
We know that <math>E\left[\left|\mathbf{X}-\mathbf{X}_{n}\right|^{2}\right]\rightarrow0</math>  as <math>n\rightarrow\infty</math> .
+
We know that <math class="inline">E\left[\left|\mathbf{X}-\mathbf{X}_{n}\right|^{2}\right]\rightarrow0</math>  as <math class="inline">n\rightarrow\infty</math> .
  
By using Chebyshev inequality [CS1ChebyshevInequality],
+
By using [[ECE 600 Chebyshev Inequality|Chebyshev Inequality]],
  
<math>\lim_{n\rightarrow\infty}P\left(\left\{ \mathbf{X}-\mathbf{X}_{n}\right\} \geq\epsilon\right)\leq\lim_{n\rightarrow\infty}\left(\frac{E\left[\left|\mathbf{X}-\mathbf{X}_{n}\right|^{2}\right]}{\epsilon^{2}}\right)=\frac{\lim_{n\rightarrow\infty}E\left[\left|\mathbf{X}-\mathbf{X}_{n}\right|^{2}\right]}{\epsilon^{2}}=0.</math>  
+
<math class="inline">\lim_{n\rightarrow\infty}P\left(\left\{ \mathbf{X}-\mathbf{X}_{n}\right\} \geq\epsilon\right)\leq\lim_{n\rightarrow\infty}\left(\frac{E\left[\left|\mathbf{X}-\mathbf{X}_{n}\right|^{2}\right]}{\epsilon^{2}}\right)=\frac{\lim_{n\rightarrow\infty}E\left[\left|\mathbf{X}-\mathbf{X}_{n}\right|^{2}\right]}{\epsilon^{2}}=0.</math>  
  
<math>\therefore</math>  A sequence of random variable that converge in mean square sense to the random variable <math>\mathbf{X}</math> , also converges in probability to <math>\mathbf{X}</math> .
+
<math class="inline">\therefore</math>  A sequence of random variable that converge in mean square sense to the random variable <math class="inline">\mathbf{X}</math> , also converges in probability to <math class="inline">\mathbf{X}</math> .
  
 
'''4. (20 pts)'''
 
'''4. (20 pts)'''
  
Let <math>\mathbf{X}_{t}</math>  be a band-limited white noise strictly stationary random process with bandwidth 10 KHz. It is also known that <math>\mathbf{X}_{t}</math>  is uniformly distributed between <math>\pm5</math>  volts. Find:
+
Let <math class="inline">\mathbf{X}_{t}</math>  be a band-limited white noise strictly stationary random process with bandwidth 10 KHz. It is also known that <math class="inline">\mathbf{X}_{t}</math>  is uniformly distributed between <math class="inline">\pm5</math>  volts. Find:
  
 
'''(a) (10 pts)'''
 
'''(a) (10 pts)'''
  
Let <math>\mathbf{Y}_{t}=\left(\mathbf{X}_{t}\right)^{2}</math> . Find the mean square value of <math>\mathbf{Y}_{t}</math> .
+
Let <math class="inline">\mathbf{Y}_{t}=\left(\mathbf{X}_{t}\right)^{2}</math> . Find the mean square value of <math class="inline">\mathbf{Y}_{t}</math> .
  
 
'''(b) (10 pts)'''
 
'''(b) (10 pts)'''
  
Let <math>\mathbf{X}_{t}</math>  be the input to a linear shift-invariant system with transfer function:  
+
Let <math class="inline">\mathbf{X}_{t}</math>  be the input to a linear shift-invariant system with transfer function:  
 
<br>
 
<br>
<math>H\left(f\right)=\begin{cases}
+
<math class="inline">H\left(f\right)=\begin{cases}
 
\begin{array}{lll}
 
\begin{array}{lll}
 
1    \text{      for }\left|f\right|\leq5\text{ KHz}\\
 
1    \text{      for }\left|f\right|\leq5\text{ KHz}\\
Line 74: Line 74:
 
'''5. (20 pts)'''  
 
'''5. (20 pts)'''  
  
Let a linear discrete parameter shift-invariant system have the following difference equation: <math>y\left(n\right)=0.7y\left(n-1\right)+x\left(n\right)</math> where <math>x\left(n\right)</math>  in the input and <math>y\left(n\right)</math>  is the output. Now suppose this system has as its input the discrete parameter random process <math>\mathbf{X}_{n}</math> . You may assume that the input process is zero-mean i.i.d.  
+
Let a linear discrete parameter shift-invariant system have the following difference equation: <math class="inline">y\left(n\right)=0.7y\left(n-1\right)+x\left(n\right)</math> where <math class="inline">x\left(n\right)</math>  in the input and <math class="inline">y\left(n\right)</math>  is the output. Now suppose this system has as its input the discrete parameter random process <math class="inline">\mathbf{X}_{n}</math> . You may assume that the input process is zero-mean i.i.d.  
  
 
'''(a) (5 pts)'''
 
'''(a) (5 pts)'''
Line 80: Line 80:
 
Is the input wide-sense stationary (show your work)?
 
Is the input wide-sense stationary (show your work)?
  
<math>E\left[\mathbf{X}_{n}\right]=0.</math>  
+
<math class="inline">E\left[\mathbf{X}_{n}\right]=0.</math>  
  
<math>R_{\mathbf{XX}}\left(n+m,\; n\right)</math>  
+
<math class="inline">R_{\mathbf{XX}}\left(n+m,\; n\right)</math>  
  
<math>\therefore\;\mathbf{X}_{n}\text{ is wide-sense stationary.}</math>  
+
<math class="inline">\therefore\;\mathbf{X}_{n}\text{ is wide-sense stationary.}</math>  
  
 
'''(b) (5 pts)'''
 
'''(b) (5 pts)'''
Line 90: Line 90:
 
Is the output process wide-sense stationary (show your work)?
 
Is the output process wide-sense stationary (show your work)?
  
<math>E\left[\mathbf{Y}_{n}\right]=0.7E\left[\mathbf{Y}_{n-1}\right]+E\left[\mathbf{X}_{n}\right]=0.7E\left[\mathbf{Y}_{n-1}\right]=0.7^{2}E\left[\mathbf{Y}_{n-2}\right]=0.7^{n}E\left[\mathbf{Y}_{0}\right]=0.</math>  
+
<math class="inline">E\left[\mathbf{Y}_{n}\right]=0.7E\left[\mathbf{Y}_{n-1}\right]+E\left[\mathbf{X}_{n}\right]=0.7E\left[\mathbf{Y}_{n-1}\right]=0.7^{2}E\left[\mathbf{Y}_{n-2}\right]=0.7^{n}E\left[\mathbf{Y}_{0}\right]=0.</math>  
  
<math>E\left[\mathbf{Y}_{0}\right]=E\left[\sum_{n=-\infty}^{\infty}h\left(0-n\right)\mathbf{X}\left(n\right)\right]=\sum_{n=-\infty}^{\infty}h\left(-n\right)E\left[\mathbf{X}\left(n\right)\right]=0.</math>  
+
<math class="inline">E\left[\mathbf{Y}_{0}\right]=E\left[\sum_{n=-\infty}^{\infty}h\left(0-n\right)\mathbf{X}\left(n\right)\right]=\sum_{n=-\infty}^{\infty}h\left(-n\right)E\left[\mathbf{X}\left(n\right)\right]=0.</math>  
  
<math>R_{\mathbf{YY}}\left(n+m,\; n\right)</math>  
+
<math class="inline">R_{\mathbf{YY}}\left(n+m,\; n\right)</math>  
  
<math>R_{\mathbf{YY}}\left(n+m,\; n\right)</math>  depends on the time difference <math>m</math> . Thus, <math>\mathbf{Y}_{n}</math>  is wide-sense stationary.  
+
<math class="inline">R_{\mathbf{YY}}\left(n+m,\; n\right)</math>  depends on the time difference <math class="inline">m</math> . Thus, <math class="inline">\mathbf{Y}_{n}</math>  is wide-sense stationary.  
  
 
'''(c) (5 pts)'''
 
'''(c) (5 pts)'''
Line 102: Line 102:
 
Find the autocorrelation function of the input process.
 
Find the autocorrelation function of the input process.
  
<math>R_{\mathbf{XX}}\left(n,n+m\right)=R_{\mathbf{X}}\left(m\right)=\sigma_{\mathbf{X}}^{2}\delta\left(m\right).</math>  
+
<math class="inline">R_{\mathbf{XX}}\left(n,n+m\right)=R_{\mathbf{X}}\left(m\right)=\sigma_{\mathbf{X}}^{2}\delta\left(m\right).</math>  
  
 
'''(d) (5 pts)'''
 
'''(d) (5 pts)'''
Line 108: Line 108:
 
Find the autocorrelation function, in closed form, for the output process.
 
Find the autocorrelation function, in closed form, for the output process.
  
<math>R_{\mathbf{Y}}\left(m\right)</math>  
+
<math class="inline">R_{\mathbf{Y}}\left(m\right)</math>  
  
<math>\because\; E\left[\mathbf{X}\left(n\right)\mathbf{Y}\left(m\right)\right]=E\left[\sum_{k=-\infty}^{\infty}h\left(m-k\right)\mathbf{X}\left(n\right)\mathbf{X}\left(k\right)\right]=\sum_{k=-\infty}^{\infty}h\left(m-k\right)\left(\sigma_{\mathbf{X}}^{2}\delta\left(n-k\right)\right).</math>  
+
<math class="inline">\because\; E\left[\mathbf{X}\left(n\right)\mathbf{Y}\left(m\right)\right]=E\left[\sum_{k=-\infty}^{\infty}h\left(m-k\right)\mathbf{X}\left(n\right)\mathbf{X}\left(k\right)\right]=\sum_{k=-\infty}^{\infty}h\left(m-k\right)\left(\sigma_{\mathbf{X}}^{2}\delta\left(n-k\right)\right).</math>  
  
 
----
 
----
 
[[ECE600|Back to ECE600]]
 
[[ECE600|Back to ECE600]]
  
[[ECE 600 QE|Back to ECE 600 QE]]
+
[[ECE 600 QE|Back to my ECE 600 QE page]]
 +
 
 +
[[ECE_PhD_Qualifying_Exams|Back to the general ECE PHD QE page]] (for problem discussion)

Latest revision as of 07:23, 27 June 2012

7.2 QE 2001 January

1. (20 pts)

State and prove the Tchebycheff Inequality.

Answer

You can see the proof of the Chebyshev Inequality.

2.

(a) (7 pts)

Let $ A $ and $ B $ be statistically independent events in the same probability space. Are $ A $ and $ B^{C} $ independent? (You must prove your result).

$ P\left(A\right)=P\left(A\cap\left(B\cup B^{C}\right)\right)=P\left(\left(A\cap B\right)\cup\left(A\cap B^{C}\right)\right)=P\left(A\cap B\right)+P\left(A\cap B^{C}\right)=P\left(A\right)P\left(B\right)+P\left(A\cap B^{C}\right). $

$ P\left(A\cap B^{C}\right)=P\left(A\right)-P\left(A\right)P\left(B\right)=P\left(A\right)\left(1-P\left(B\right)\right)=P\left(A\right)P\left(B^{C}\right). $

$ \therefore A\text{ and }B^{C}\text{ are independent. } $

(b) (7 pts)

Can two events be statistically independent and mutually exclusive? (You must derive the conditions on A and B for this to be true or not.)

If $ P\left(A\right)=0 $ or $ P\left(B\right)=0 $ , then A and B are statistically independent and mutually exclusive. Prove this:

Without loss of generality, suppose that $ P\left(A\right)=0 $ . $ 0=P\left(A\right)\geq P\left(A\cap B\right)\geq0\Longrightarrow P\left(A\cap B\right)=0\qquad\therefore\text{mutually excclusive}. $

$ P\left(A\cap B\right)=0=P\left(A\right)P\left(B\right)\qquad\therefore\text{statistically independent.} $

(c) (6 pts)

State the Axioms of Probability.

Answer

You can see the Axioms of Probability.

3. (20 pts)

Let the $ \mathbf{X}_{1},\mathbf{X}_{2},\cdots $ be a sequence of random variables that converge in mean square to the random variable $ \mathbf{X} $ . Does the sequence also converge to $ \mathbf{X} $ in probability? (A simple yes or no answer is not acceptable, you must derive the result.)

We know that $ E\left[\left|\mathbf{X}-\mathbf{X}_{n}\right|^{2}\right]\rightarrow0 $ as $ n\rightarrow\infty $ .

By using Chebyshev Inequality,

$ \lim_{n\rightarrow\infty}P\left(\left\{ \mathbf{X}-\mathbf{X}_{n}\right\} \geq\epsilon\right)\leq\lim_{n\rightarrow\infty}\left(\frac{E\left[\left|\mathbf{X}-\mathbf{X}_{n}\right|^{2}\right]}{\epsilon^{2}}\right)=\frac{\lim_{n\rightarrow\infty}E\left[\left|\mathbf{X}-\mathbf{X}_{n}\right|^{2}\right]}{\epsilon^{2}}=0. $

$ \therefore $ A sequence of random variable that converge in mean square sense to the random variable $ \mathbf{X} $ , also converges in probability to $ \mathbf{X} $ .

4. (20 pts)

Let $ \mathbf{X}_{t} $ be a band-limited white noise strictly stationary random process with bandwidth 10 KHz. It is also known that $ \mathbf{X}_{t} $ is uniformly distributed between $ \pm5 $ volts. Find:

(a) (10 pts)

Let $ \mathbf{Y}_{t}=\left(\mathbf{X}_{t}\right)^{2} $ . Find the mean square value of $ \mathbf{Y}_{t} $ .

(b) (10 pts)

Let $ \mathbf{X}_{t} $ be the input to a linear shift-invariant system with transfer function:
$ H\left(f\right)=\begin{cases} \begin{array}{lll} 1 \text{ for }\left|f\right|\leq5\text{ KHz}\\ 0.5 \text{ for }5\text{ KHz}\leq\left|f\right|\leq50\text{ KHz}\\ 0 \text{ elsewhere. } \end{array}\end{cases} $

Find the mean and variance of the output. 5. (20 pts)

Let a linear discrete parameter shift-invariant system have the following difference equation: $ y\left(n\right)=0.7y\left(n-1\right)+x\left(n\right) $ where $ x\left(n\right) $ in the input and $ y\left(n\right) $ is the output. Now suppose this system has as its input the discrete parameter random process $ \mathbf{X}_{n} $ . You may assume that the input process is zero-mean i.i.d.

(a) (5 pts)

Is the input wide-sense stationary (show your work)?

$ E\left[\mathbf{X}_{n}\right]=0. $

$ R_{\mathbf{XX}}\left(n+m,\; n\right) $

$ \therefore\;\mathbf{X}_{n}\text{ is wide-sense stationary.} $

(b) (5 pts)

Is the output process wide-sense stationary (show your work)?

$ E\left[\mathbf{Y}_{n}\right]=0.7E\left[\mathbf{Y}_{n-1}\right]+E\left[\mathbf{X}_{n}\right]=0.7E\left[\mathbf{Y}_{n-1}\right]=0.7^{2}E\left[\mathbf{Y}_{n-2}\right]=0.7^{n}E\left[\mathbf{Y}_{0}\right]=0. $

$ E\left[\mathbf{Y}_{0}\right]=E\left[\sum_{n=-\infty}^{\infty}h\left(0-n\right)\mathbf{X}\left(n\right)\right]=\sum_{n=-\infty}^{\infty}h\left(-n\right)E\left[\mathbf{X}\left(n\right)\right]=0. $

$ R_{\mathbf{YY}}\left(n+m,\; n\right) $

$ R_{\mathbf{YY}}\left(n+m,\; n\right) $ depends on the time difference $ m $ . Thus, $ \mathbf{Y}_{n} $ is wide-sense stationary.

(c) (5 pts)

Find the autocorrelation function of the input process.

$ R_{\mathbf{XX}}\left(n,n+m\right)=R_{\mathbf{X}}\left(m\right)=\sigma_{\mathbf{X}}^{2}\delta\left(m\right). $

(d) (5 pts)

Find the autocorrelation function, in closed form, for the output process.

$ R_{\mathbf{Y}}\left(m\right) $

$ \because\; E\left[\mathbf{X}\left(n\right)\mathbf{Y}\left(m\right)\right]=E\left[\sum_{k=-\infty}^{\infty}h\left(m-k\right)\mathbf{X}\left(n\right)\mathbf{X}\left(k\right)\right]=\sum_{k=-\infty}^{\infty}h\left(m-k\right)\left(\sigma_{\mathbf{X}}^{2}\delta\left(n-k\right)\right). $


Back to ECE600

Back to my ECE 600 QE page

Back to the general ECE PHD QE page (for problem discussion)

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett