(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
4 Homework
+
[[Category:random variables]]
 +
[[Category:ECE600]]
 +
[[Category:Sangchun Han]]
 +
==='''ECE600 Homework'''===
 +
From the notes of  [[user:han84|Sangchun Han]], [[ECE]] PhD student.
 +
----
 +
=Problem 7-20 (Homework 10)=
  
Problem 7-20 (Homework 10)
+
We place at random n  points in the interval <math class="inline">\left(0,1\right)</math>  and we denote by <math class="inline">\mathbf{X}</math>  and <math class="inline">\mathbf{Y}</math>  the distance from the origin to the first and last point respectively. Find <math class="inline">F\left(x\right)</math> , <math class="inline">F\left(y\right)</math> , and <math class="inline">F\left(x,y\right)</math> .
 
+
We place at random n  points in the interval <math>\left(0,1\right)</math>  and we denote by <math>\mathbf{X}</math>  and <math>\mathbf{Y}</math>  the distance from the origin to the first and last point respectively. Find <math>F\left(x\right)</math> , <math>F\left(y\right)</math> , and <math>F\left(x,y\right)</math> .
+
  
 
Solution
 
Solution
  
The event <math>\left\{ \mathbf{X}\leq x\right\}</math>  occurs if at least one point falls in the interval <math>\left(0,x\right]</math> . The event <math>\left\{ \mathbf{Y}\leq y\right\}</math>  occurs if all of the points fall in the interval <math>\left(0,y\right]</math> . Let <math>A_{x}\triangleq\left\{ \mathbf{X}\leq x\right\} =\left\{ \text{all points fall in }\left(x,1\right)\right\} ^{C}</math>  and <math>B_{y}\triangleq\left\{ \mathbf{Y}\leq y\right\} =\left\{ \text{no points fall in}\left(y,1\right)\right\}</math> <math>=\left\{ \text{all points fall in }\left(0,y\right)\right\}</math> .  Hence for <math>x\in\left[0,1\right]</math>  and <math>y\in\left[0,1\right]</math> , we have <math>F_{\mathbf{X}}\left(x\right)=P\left(A_{x}\right)=1-P\left(\bar{A_{x}}\right)=1-\left(1-x\right)^{n}</math>  and <math>F_{\mathbf{Y}}\left(y\right)=P\left(B_{y}\right)=y^{n}.</math>  Because we know that <math>F_{\mathbf{XY}}\left(x,y\right)=P\left(A_{x}\cap B_{y}\right)</math>  and <math>B_{y}=\left(A_{x}\cap B_{y}\right)\cup\left(\bar{A}_{x}\cap B_{y}\right)</math> , <math>F_{\mathbf{XY}}\left(x,y\right)=P\left(A_{x}\cap B_{y}\right)=P\left(B_{y}\right)-P\left(\bar{A}_{x}\cap B_{y}\right).</math>  Now if <math>x\leq y</math> , then <math>\bar{A}_{x}\cap B_{y}=\left\{ \text{all points in interval }\left(x,y\right]\right\}</math>  and <math>P\left(\bar{A}_{x}\cap B_{y}\right)=\left(y-x\right)^{n}</math> . If x>y , then <math>\bar{A}_{x}\cap B_{y}=\varnothing</math>  and <math>P\left(\bar{A}_{x}\cap B_{y}\right)=0</math> . Thus, <math>F_{\mathbf{XY}}\left(x,y\right)=P\left(A_{x}\cap B_{y}\right)=P\left(B_{y}\right)-P\left(\bar{A}_{x}\cap B_{y}\right)=\left\{ \begin{array}{lll}
+
The event <math class="inline">\left\{ \mathbf{X}\leq x\right\}</math>  occurs if at least one point falls in the interval <math class="inline">\left(0,x\right]</math> . The event <math class="inline">\left\{ \mathbf{Y}\leq y\right\}</math>  occurs if all of the points fall in the interval <math class="inline">\left(0,y\right]</math> . Let <math class="inline">A_{x}\triangleq\left\{ \mathbf{X}\leq x\right\} =\left\{ \text{all points fall in }\left(x,1\right)\right\} ^{C}</math>  and <math class="inline">B_{y}\triangleq\left\{ \mathbf{Y}\leq y\right\} =\left\{ \text{no points fall in}\left(y,1\right)\right\}</math> <math class="inline">=\left\{ \text{all points fall in }\left(0,y\right)\right\}</math> .  Hence for <math class="inline">x\in\left[0,1\right]</math>  and <math class="inline">y\in\left[0,1\right]</math> , we have <math class="inline">F_{\mathbf{X}}\left(x\right)=P\left(A_{x}\right)=1-P\left(\bar{A_{x}}\right)=1-\left(1-x\right)^{n}</math>  and <math class="inline">F_{\mathbf{Y}}\left(y\right)=P\left(B_{y}\right)=y^{n}.</math>  Because we know that <math class="inline">F_{\mathbf{XY}}\left(x,y\right)=P\left(A_{x}\cap B_{y}\right)</math>  and <math class="inline">B_{y}=\left(A_{x}\cap B_{y}\right)\cup\left(\bar{A}_{x}\cap B_{y}\right)</math> , <math class="inline">F_{\mathbf{XY}}\left(x,y\right)=P\left(A_{x}\cap B_{y}\right)=P\left(B_{y}\right)-P\left(\bar{A}_{x}\cap B_{y}\right).</math>  Now if <math class="inline">x\leq y</math> , then <math class="inline">\bar{A}_{x}\cap B_{y}=\left\{ \text{all points in interval }\left(x,y\right]\right\}</math>  and <math class="inline">P\left(\bar{A}_{x}\cap B_{y}\right)=\left(y-x\right)^{n}</math> . If x>y , then <math class="inline">\bar{A}_{x}\cap B_{y}=\varnothing</math>  and <math class="inline">P\left(\bar{A}_{x}\cap B_{y}\right)=0</math> . Thus, <math class="inline">F_{\mathbf{XY}}\left(x,y\right)=P\left(A_{x}\cap B_{y}\right)=P\left(B_{y}\right)-P\left(\bar{A}_{x}\cap B_{y}\right)=\left\{ \begin{array}{lll}
 
y^{n}-\left(y-x\right)^{n} & , & x\leq y\\
 
y^{n}-\left(y-x\right)^{n} & , & x\leq y\\
 
y^{n} & , & x>y.
 
y^{n} & , & x>y.
 
\end{array}\right.</math>  
 
\end{array}\right.</math>  
  
Problem 7-25 (Homework 10)
+
=Problem 7-25 (Homework 10)=
  
Show that if <math>a_{n}\rightarrow</math> a  and <math>E\left\{ \left|\mathbf{X}_{n}-a_{n}\right|^{2}\right\} \rightarrow0</math>, then <math>\mathbf{X}_{n}\rightarrow a</math>  in the MS sense as <math>n\rightarrow\infty</math> .
+
Show that if <math class="inline">a_{n}\rightarrow</math> a  and <math class="inline">E\left\{ \left|\mathbf{X}_{n}-a_{n}\right|^{2}\right\} \rightarrow0</math>, then <math class="inline">\mathbf{X}_{n}\rightarrow a</math>  in the MS sense as <math class="inline">n\rightarrow\infty</math> .
  
 
Solution
 
Solution
Line 20: Line 24:
 
• Definition of m.s.  convergence
 
• Definition of m.s.  convergence
  
We say that a random sequence converges in mean-square (m.s.) to a random variable <math>\mathbf{X}</math>  if <math>E\left[\left|\mathbf{X}_{n}-\mathbf{X}\right|^{2}\right]\rightarrow0\text{ as }n\rightarrow\infty.</math>  
+
We say that a random sequence converges in mean-square (m.s.) to a random variable <math class="inline">\mathbf{X}</math>  if <math class="inline">E\left[\left|\mathbf{X}_{n}-\mathbf{X}\right|^{2}\right]\rightarrow0\text{ as }n\rightarrow\infty.</math>  
  
• Expand <math>E\left\{ \left(\mathbf{X}_{n}-a\right)^{2}\right\}</math>  using <math>a_{n} E\left\{ \left(\mathbf{X}_{n}-a\right)^{2}\right\}</math>   
+
• Expand <math class="inline">E\left\{ \left(\mathbf{X}_{n}-a\right)^{2}\right\}</math>  using <math class="inline">a_{n} E\left\{ \left(\mathbf{X}_{n}-a\right)^{2}\right\}</math>   
  
• SubstitutionNow as <math>n\rightarrow\infty</math> , we are given 1) <math>a_{n}\rightarrow a</math> , 2) <math>E\left\{ \left|\mathbf{X}_{n}-a_{n}\right|^{2}\right\} \rightarrow0</math> .
+
• SubstitutionNow as <math class="inline">n\rightarrow\infty</math> , we are given 1) <math class="inline">a_{n}\rightarrow a</math> , 2) <math class="inline">E\left\{ \left|\mathbf{X}_{n}-a_{n}\right|^{2}\right\} \rightarrow0</math> .
  
• Thus, we have <math>\lim_{n\rightarrow\infty}E\left\{ \left(\mathbf{X}_{n}-a\right)^{2}\right\}</math>  <math>\therefore E\left\{ \left(\mathbf{X}_{n}-a\right)^{2}\right\} \rightarrow0\text{ as }n\rightarrow\infty.</math>  
+
• Thus, we have <math class="inline">\lim_{n\rightarrow\infty}E\left\{ \left(\mathbf{X}_{n}-a\right)^{2}\right\}</math>  <math class="inline">\therefore E\left\{ \left(\mathbf{X}_{n}-a\right)^{2}\right\} \rightarrow0\text{ as }n\rightarrow\infty.</math>  
  
Problem 7-27 (Homework 10)
+
=Problem 7-27 (Homework 10)=
  
An infinite sum is by definition a limit: <math>\sum_{k=1}^{\infty}\mathbf{X}_{k}=\lim_{n\rightarrow\infty}\mathbf{Y}_{n}\text{ where }\mathbf{Y}_{n}=\sum_{k=1}^{n}\mathbf{X}_{k}</math>  Show that if the random variables <math>\mathbf{X}_{k}</math>  are independent with zero mean and variance <math>\sigma_{k}^{2}</math> , then the sum exists in the MS sense iff <math>\sum_{k=1}^{\infty}\sigma_{k}^{2}<\infty.</math>  
+
An infinite sum is by definition a limit: <math class="inline">\sum_{k=1}^{\infty}\mathbf{X}_{k}=\lim_{n\rightarrow\infty}\mathbf{Y}_{n}\text{ where }\mathbf{Y}_{n}=\sum_{k=1}^{n}\mathbf{X}_{k}</math>  Show that if the random variables <math class="inline">\mathbf{X}_{k}</math>  are independent with zero mean and variance <math class="inline">\sigma_{k}^{2}</math> , then the sum exists in the MS sense iff <math class="inline">\sum_{k=1}^{\infty}\sigma_{k}^{2}<\infty.</math>  
  
 
Hint:
 
Hint:
  
<math>E\left\{ \left(\mathbf{Y}_{n+m}-\mathbf{Y}_{n}\right)^{2}\right\} =\sum_{k=n+1}^{n+m}\sigma_{k}^{2}.</math>  
+
<math class="inline">E\left\{ \left(\mathbf{Y}_{n+m}-\mathbf{Y}_{n}\right)^{2}\right\} =\sum_{k=n+1}^{n+m}\sigma_{k}^{2}.</math>  
  
 
Solution
 
Solution
  
We say that a random sequence converges in mean-square (m.s.) to a random variable <math>\mathbf{X}</math>  if <math>E\left[\left|\mathbf{X}_{n}-\mathbf{X}\right|^{2}\right]\rightarrow0\text{ as }n\rightarrow\infty.</math>
+
We say that a random sequence converges in mean-square (m.s.) to a random variable <math class="inline">\mathbf{X}</math>  if <math class="inline">E\left[\left|\mathbf{X}_{n}-\mathbf{X}\right|^{2}\right]\rightarrow0\text{ as }n\rightarrow\infty.</math>
 +
----
 +
[[ECE600|Back to ECE600]]

Latest revision as of 10:55, 30 November 2010

ECE600 Homework

From the notes of Sangchun Han, ECE PhD student.


Problem 7-20 (Homework 10)

We place at random n points in the interval $ \left(0,1\right) $ and we denote by $ \mathbf{X} $ and $ \mathbf{Y} $ the distance from the origin to the first and last point respectively. Find $ F\left(x\right) $ , $ F\left(y\right) $ , and $ F\left(x,y\right) $ .

Solution

The event $ \left\{ \mathbf{X}\leq x\right\} $ occurs if at least one point falls in the interval $ \left(0,x\right] $ . The event $ \left\{ \mathbf{Y}\leq y\right\} $ occurs if all of the points fall in the interval $ \left(0,y\right] $ . Let $ A_{x}\triangleq\left\{ \mathbf{X}\leq x\right\} =\left\{ \text{all points fall in }\left(x,1\right)\right\} ^{C} $ and $ B_{y}\triangleq\left\{ \mathbf{Y}\leq y\right\} =\left\{ \text{no points fall in}\left(y,1\right)\right\} $ $ =\left\{ \text{all points fall in }\left(0,y\right)\right\} $ . Hence for $ x\in\left[0,1\right] $ and $ y\in\left[0,1\right] $ , we have $ F_{\mathbf{X}}\left(x\right)=P\left(A_{x}\right)=1-P\left(\bar{A_{x}}\right)=1-\left(1-x\right)^{n} $ and $ F_{\mathbf{Y}}\left(y\right)=P\left(B_{y}\right)=y^{n}. $ Because we know that $ F_{\mathbf{XY}}\left(x,y\right)=P\left(A_{x}\cap B_{y}\right) $ and $ B_{y}=\left(A_{x}\cap B_{y}\right)\cup\left(\bar{A}_{x}\cap B_{y}\right) $ , $ F_{\mathbf{XY}}\left(x,y\right)=P\left(A_{x}\cap B_{y}\right)=P\left(B_{y}\right)-P\left(\bar{A}_{x}\cap B_{y}\right). $ Now if $ x\leq y $ , then $ \bar{A}_{x}\cap B_{y}=\left\{ \text{all points in interval }\left(x,y\right]\right\} $ and $ P\left(\bar{A}_{x}\cap B_{y}\right)=\left(y-x\right)^{n} $ . If x>y , then $ \bar{A}_{x}\cap B_{y}=\varnothing $ and $ P\left(\bar{A}_{x}\cap B_{y}\right)=0 $ . Thus, $ F_{\mathbf{XY}}\left(x,y\right)=P\left(A_{x}\cap B_{y}\right)=P\left(B_{y}\right)-P\left(\bar{A}_{x}\cap B_{y}\right)=\left\{ \begin{array}{lll} y^{n}-\left(y-x\right)^{n} & , & x\leq y\\ y^{n} & , & x>y. \end{array}\right. $

Problem 7-25 (Homework 10)

Show that if $ a_{n}\rightarrow $ a and $ E\left\{ \left|\mathbf{X}_{n}-a_{n}\right|^{2}\right\} \rightarrow0 $, then $ \mathbf{X}_{n}\rightarrow a $ in the MS sense as $ n\rightarrow\infty $ .

Solution

• Definition of m.s. convergence

We say that a random sequence converges in mean-square (m.s.) to a random variable $ \mathbf{X} $ if $ E\left[\left|\mathbf{X}_{n}-\mathbf{X}\right|^{2}\right]\rightarrow0\text{ as }n\rightarrow\infty. $

• Expand $ E\left\{ \left(\mathbf{X}_{n}-a\right)^{2}\right\} $ using $ a_{n} E\left\{ \left(\mathbf{X}_{n}-a\right)^{2}\right\} $

• SubstitutionNow as $ n\rightarrow\infty $ , we are given 1) $ a_{n}\rightarrow a $ , 2) $ E\left\{ \left|\mathbf{X}_{n}-a_{n}\right|^{2}\right\} \rightarrow0 $ .

• Thus, we have $ \lim_{n\rightarrow\infty}E\left\{ \left(\mathbf{X}_{n}-a\right)^{2}\right\} $ $ \therefore E\left\{ \left(\mathbf{X}_{n}-a\right)^{2}\right\} \rightarrow0\text{ as }n\rightarrow\infty. $

Problem 7-27 (Homework 10)

An infinite sum is by definition a limit: $ \sum_{k=1}^{\infty}\mathbf{X}_{k}=\lim_{n\rightarrow\infty}\mathbf{Y}_{n}\text{ where }\mathbf{Y}_{n}=\sum_{k=1}^{n}\mathbf{X}_{k} $ Show that if the random variables $ \mathbf{X}_{k} $ are independent with zero mean and variance $ \sigma_{k}^{2} $ , then the sum exists in the MS sense iff $ \sum_{k=1}^{\infty}\sigma_{k}^{2}<\infty. $

Hint:

$ E\left\{ \left(\mathbf{Y}_{n+m}-\mathbf{Y}_{n}\right)^{2}\right\} =\sum_{k=n+1}^{n+m}\sigma_{k}^{2}. $

Solution

We say that a random sequence converges in mean-square (m.s.) to a random variable $ \mathbf{X} $ if $ E\left[\left|\mathbf{X}_{n}-\mathbf{X}\right|^{2}\right]\rightarrow0\text{ as }n\rightarrow\infty. $


Back to ECE600

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett