Line 7: Line 7:
 
Definition:
 
Definition:
  
A random sequence or a discrete-time random process is a sequence of random variables <math>\mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots</math>  defined on a probability space <math>\left(\mathcal{S},\mathcal{F},P\right)</math> .
+
A random sequence or a discrete-time random process is a sequence of random variables <math class="inline">\mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots</math>  defined on a probability space <math class="inline">\left(\mathcal{S},\mathcal{F},P\right)</math> .
  
 
Note
 
Note
  
• We often write this random sequence as <math>\left\{ \mathbf{X}_{n}\right\}</math>  or <math>\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math>  or <math>\left\{ \mathbf{X}_{n}\right\} _{n\in\mathbf{N}}</math> .
+
• We often write this random sequence as <math class="inline">\left\{ \mathbf{X}_{n}\right\}</math>  or <math class="inline">\left\{ \mathbf{X}_{n}\right\} _{n\geq1}</math>  or <math class="inline">\left\{ \mathbf{X}_{n}\right\} _{n\in\mathbf{N}}</math> .
  
• For any specific <math>\omega_{0}\in\mathcal{S}</math> , <math>\mathbf{X}_{1}\left(\omega_{0}\right),\cdots,\mathbf{X}_{n}\left(\omega_{0}\right),\cdots</math>  is a sequence of real numbers.
+
• For any specific <math class="inline">\omega_{0}\in\mathcal{S}</math> , <math class="inline">\mathbf{X}_{1}\left(\omega_{0}\right),\cdots,\mathbf{X}_{n}\left(\omega_{0}\right),\cdots</math>  is a sequence of real numbers.
 
----
 
----
 
*[[ECE 600 Convergence|Convergence]]
 
*[[ECE 600 Convergence|Convergence]]

Latest revision as of 10:35, 30 November 2010

Sequences of Random Variables

From the course notes of Sangchun Han, ECE PhD student.


Definition:

A random sequence or a discrete-time random process is a sequence of random variables $ \mathbf{X}_{1},\cdots,\mathbf{X}_{n},\cdots $ defined on a probability space $ \left(\mathcal{S},\mathcal{F},P\right) $ .

Note

• We often write this random sequence as $ \left\{ \mathbf{X}_{n}\right\} $ or $ \left\{ \mathbf{X}_{n}\right\} _{n\geq1} $ or $ \left\{ \mathbf{X}_{n}\right\} _{n\in\mathbf{N}} $ .

• For any specific $ \omega_{0}\in\mathcal{S} $ , $ \mathbf{X}_{1}\left(\omega_{0}\right),\cdots,\mathbf{X}_{n}\left(\omega_{0}\right),\cdots $ is a sequence of real numbers.



Back to ECE600

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch