(One intermediate revision by the same user not shown)
Line 5: Line 5:
 
----
 
----
  
Suppose <math>X(w)\,\!</math> is the DTFT of a discrete-time signal <math>x[n]\,\!</math>.
+
Suppose <math>X(\omega)\,\!</math> is the DTFT of a discrete-time signal <math>x[n]\,\!</math>.
  
What is the DTFT of the time-reversal <math>x[-n]</math>?
+
What is the DTFT of the time-reversal <math>x[-n]\,\!</math>?
  
<math>\begin{align} & \sum_{n=-\infty}^{\infty} x[-n]e^{-jwn} \\ & \quad (\text{change of variable} \;\; m=-n) \\ = & \sum_{m=-\infty}^{\infty} x[m]e^{jwm} = X(-w) \\ \end{align}</math>
+
<math>\begin{align} & \sum_{n=-\infty}^{\infty} x[-n]e^{-j\omega n} \\ & \quad (\text{change of variable} \;\; m=-n) \\ = & \sum_{m=-\infty}^{\infty} x[m]e^{j\omega m} = X(-\omega) \\ \end{align}</math>
  
 
----
 
----

Latest revision as of 10:24, 17 November 2010



Solution to Q1 of Week 13 Quiz Pool


Suppose $ X(\omega)\,\! $ is the DTFT of a discrete-time signal $ x[n]\,\! $.

What is the DTFT of the time-reversal $ x[-n]\,\! $?

$ \begin{align} & \sum_{n=-\infty}^{\infty} x[-n]e^{-j\omega n} \\ & \quad (\text{change of variable} \;\; m=-n) \\ = & \sum_{m=-\infty}^{\infty} x[m]e^{j\omega m} = X(-\omega) \\ \end{align} $


Back to Lab Week 13 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett