Line 4: | Line 4: | ||
Inner product space | Inner product space | ||
− | Any Euclidean space <math>\mathbf{R}^{n}</math> with dot product is an inner product space. | + | Any Euclidean space <math class="inline">\mathbf{R}^{n}</math> with dot product is an inner product space. |
<math>\left\langle \left(x_{1},\cdots,x_{n}\right),\left(y_{1},\cdots,y_{n}\right)\right\rangle \triangleq\sum_{i=1}^{n}x_{i}y_{i}</math> | <math>\left\langle \left(x_{1},\cdots,x_{n}\right),\left(y_{1},\cdots,y_{n}\right)\right\rangle \triangleq\sum_{i=1}^{n}x_{i}y_{i}</math> |
Latest revision as of 10:34, 30 November 2010
1.13 etc.
From the ECE600 Pre-requisites notes of Sangchun Han, ECE PhD student.
Inner product space
Any Euclidean space $ \mathbf{R}^{n} $ with dot product is an inner product space.
$ \left\langle \left(x_{1},\cdots,x_{n}\right),\left(y_{1},\cdots,y_{n}\right)\right\rangle \triangleq\sum_{i=1}^{n}x_{i}y_{i} $