(One intermediate revision by one other user not shown)
Line 4: Line 4:
 
='''1.2.1 Probability Space'''=
 
='''1.2.1 Probability Space'''=
  
• Probability Space = <math>\left\{ \mathcal{S},\mathcal{F}\left(\mathcal{S}\right),\mathcal{P}\right\}</math>   
+
• Probability Space = <math class="inline">\left\{ \mathcal{S},\mathcal{F}\left(\mathcal{S}\right),\mathcal{P}\right\}</math>   
  
• <math>\mathcal{S}\sim</math>  sample space
+
• <math class="inline">\mathcal{S}\sim</math>  sample space
  
• <math>\mathcal{F}\left(\mathcal{S}\right)\sim</math>  event space , collection of subsets of <math>\mathcal{S}</math>  (including sample space itself)
+
• <math class="inline">\mathcal{F}\left(\mathcal{S}\right)\sim</math>  event space , collection of subsets of <math class="inline">\mathcal{S}</math>  (including sample space itself)
  
• <math>\mathcal{P}\sim</math>  maps <math>\mathcal{F}\left(\mathcal{S}\right)\rightarrow\left[0,1\right]</math>  
+
• <math class="inline">\mathcal{P}\sim</math>  maps <math class="inline">\mathcal{F}\left(\mathcal{S}\right)\rightarrow\left[0,1\right]</math>  
  
 
='''1.2.2 Event space'''=
 
='''1.2.2 Event space'''=
  
• Event space <math>F\left(S\right)</math>  or <math>F</math>  is a non-empty collection of subset of <math>S</math>  satisfying the following three closure properties:
+
• Event space <math class="inline">F\left(S\right)</math>  or <math class="inline">F</math>  is a non-empty collection of subset of <math class="inline">S</math>  satisfying the following three closure properties:
  
1. If <math>A\in F\left(S\right)</math> , then <math>\bar{A}\in F\left(S\right)</math> .
+
1. If <math class="inline">A\in F\left(S\right)</math> , then <math class="inline">\bar{A}\in F\left(S\right)</math> .
  
2. If for some finite <math>n</math> , <math>A_{1},A_{2},\cdots,A_{n}\in F\left(S\right)</math> , then <math>\bigcup_{i=1}^{n}A_{i}\in F\left(S\right)</math> .
+
2. If for some finite <math class="inline">n</math> , <math class="inline">A_{1},A_{2},\cdots,A_{n}\in F\left(S\right)</math> , then <math class="inline">\bigcup_{i=1}^{n}A_{i}\in F\left(S\right)</math> .
  
3. If <math>A_{i}\in F\left(S\right)</math> , <math>i=1,2,\cdots</math> , then <math>\bigcup_{i=1}^{\infty}A_{i}\in F\left(S\right)</math> .
+
3. If <math class="inline">A_{i}\in F\left(S\right)</math> , <math class="inline">i=1,2,\cdots</math> , then <math class="inline">\bigcup_{i=1}^{\infty}A_{i}\in F\left(S\right)</math> .
  
• A set <math>F\left(S\right)</math>  with these 3 properties is called a sigma-field (<math>\sigma</math>-field). If only 1 and 2 are satisfied, we have a field.
+
• A set <math class="inline">F\left(S\right)</math>  with these 3 properties is called a sigma-field (<math class="inline">\sigma</math>-field). If only 1 and 2 are satisfied, we have a field.
  
• It follows from three properties that <math>\varnothing,S\in F\left(S\right)</math> .
+
• It follows from three properties that <math class="inline">\varnothing,S\in F\left(S\right)</math> .
  
– Suppose <math>A\in F\left(S\right)</math> , then <math>\bar{A}\in F\left(S\right)</math> , <math>A\cup\bar{A}=S\in F\left(S\right)</math> , and <math>\bar{S}=\varnothing\in F\left(S\right)</math> .
+
– Suppose <math class="inline">A\in F\left(S\right)</math> , then <math class="inline">\bar{A}\in F\left(S\right)</math> , <math class="inline">A\cup\bar{A}=S\in F\left(S\right)</math> , and <math class="inline">\bar{S}=\varnothing\in F\left(S\right)</math> .
  
• What about intersection? Suppose <math>A,B\in F\left(S\right)</math> . Is <math>A\cap B\in F\left(S\right)</math> ?  
+
• What about intersection? Suppose <math class="inline">A,B\in F\left(S\right)</math> . Is <math class="inline">A\cap B\in F\left(S\right)</math> ?  
  
– <math>A\cap B=\overline{\overline{A\cap B}}=\overline{\overline{A}\cup\overline{B}}\in F\left(S\right)</math> .
+
– <math class="inline">A\cap B=\overline{\overline{A\cap B}}=\overline{\overline{A}\cup\overline{B}}\in F\left(S\right)</math> .
  
 
='''1.2.3 Axioms of probability'''=
 
='''1.2.3 Axioms of probability'''=
  
• The probability measure <math>P\left(\cdot\right)</math>  corresponding to <math>S</math>  and <math>F\left(S\right)</math>  is the assignment of a real number <math>P\left(A\right)</math>  to each <math>A\in F\left(S\right)</math>  satisfying following properties. Axioms of probability:
+
• The probability measure <math class="inline">P\left(\cdot\right)</math>  corresponding to <math class="inline">S</math>  and <math class="inline">F\left(S\right)</math>  is the assignment of a real number <math class="inline">P\left(A\right)</math>  to each <math class="inline">A\in F\left(S\right)</math>  satisfying following properties. Axioms of probability:
  
1. <math>P\left(A\right)\geq0</math> , <math>\forall A\in F\left(S\right)</math> .
+
1. <math class="inline">P\left(A\right)\geq0</math> , <math class="inline">\forall A\in F\left(S\right)</math> .
  
2. <math>P\left(S\right)=1</math> .
+
2. <math class="inline">P\left(S\right)=1</math> .
  
3. If <math>A_{1}</math>  and <math>A_{2}</math>  are disjoint events, then <math>P\left(A_{1}\cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)</math> . If <math>A_{1},A_{2}\in F\left(S\right)</math>  and <math>A_{1}\cap A_{2}=\varnothing</math> , then <math>A_{1}</math>  and <math>A_{2}</math>  are disjoint events.
+
3. If <math class="inline">A_{1}</math>  and <math class="inline">A_{2}</math>  are disjoint events, then <math class="inline">P\left(A_{1}\cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)</math> . If <math class="inline">A_{1},A_{2}\in F\left(S\right)</math>  and <math class="inline">A_{1}\cap A_{2}=\varnothing</math> , then <math class="inline">A_{1}</math>  and <math class="inline">A_{2}</math>  are disjoint events.
  
4. If <math>A_{1},A_{2},\cdots,A_{n},\cdots\in F\left(S\right)</math>  is a countable collection of disjointed events, then <math>P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right)</math> .
+
4. If <math class="inline">A_{1},A_{2},\cdots,A_{n},\cdots\in F\left(S\right)</math>  is a countable collection of disjointed events, then <math class="inline">P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right)</math> .
  
• <math>P\left(\cdot\right)</math>  is a set function. <math>P\left(\cdot\right):F\left(S\right)\rightarrow\mathbf{R}</math> .
+
• <math class="inline">P\left(\cdot\right)</math>  is a set function. <math class="inline">P\left(\cdot\right):F\left(S\right)\rightarrow\mathbf{R}</math> .
  
• If you want to talk about the probability of a single output <math>\omega_{0}\in S</math> , you do so by considering the single event  
+
• If you want to talk about the probability of a single output <math class="inline">\omega_{0}\in S</math> , you do so by considering the single event  
 +
 
 +
----
 +
[[ECE600|Back to ECE600]]
  
 
[[ECE 600 Prerequisites|Back to ECE 600 Prerequisites]]
 
[[ECE 600 Prerequisites|Back to ECE 600 Prerequisites]]

Latest revision as of 10:21, 30 November 2010

1.2 Probability Space

From the ECE600 Pre-requisites notes of Sangchun Han, ECE PhD student.


1.2.1 Probability Space

• Probability Space = $ \left\{ \mathcal{S},\mathcal{F}\left(\mathcal{S}\right),\mathcal{P}\right\} $

$ \mathcal{S}\sim $ sample space

$ \mathcal{F}\left(\mathcal{S}\right)\sim $ event space , collection of subsets of $ \mathcal{S} $ (including sample space itself)

$ \mathcal{P}\sim $ maps $ \mathcal{F}\left(\mathcal{S}\right)\rightarrow\left[0,1\right] $

1.2.2 Event space

• Event space $ F\left(S\right) $ or $ F $ is a non-empty collection of subset of $ S $ satisfying the following three closure properties:

1. If $ A\in F\left(S\right) $ , then $ \bar{A}\in F\left(S\right) $ .

2. If for some finite $ n $ , $ A_{1},A_{2},\cdots,A_{n}\in F\left(S\right) $ , then $ \bigcup_{i=1}^{n}A_{i}\in F\left(S\right) $ .

3. If $ A_{i}\in F\left(S\right) $ , $ i=1,2,\cdots $ , then $ \bigcup_{i=1}^{\infty}A_{i}\in F\left(S\right) $ .

• A set $ F\left(S\right) $ with these 3 properties is called a sigma-field ($ \sigma $-field). If only 1 and 2 are satisfied, we have a field.

• It follows from three properties that $ \varnothing,S\in F\left(S\right) $ .

– Suppose $ A\in F\left(S\right) $ , then $ \bar{A}\in F\left(S\right) $ , $ A\cup\bar{A}=S\in F\left(S\right) $ , and $ \bar{S}=\varnothing\in F\left(S\right) $ .

• What about intersection? Suppose $ A,B\in F\left(S\right) $ . Is $ A\cap B\in F\left(S\right) $ ?

$ A\cap B=\overline{\overline{A\cap B}}=\overline{\overline{A}\cup\overline{B}}\in F\left(S\right) $ .

1.2.3 Axioms of probability

• The probability measure $ P\left(\cdot\right) $ corresponding to $ S $ and $ F\left(S\right) $ is the assignment of a real number $ P\left(A\right) $ to each $ A\in F\left(S\right) $ satisfying following properties. Axioms of probability:

1. $ P\left(A\right)\geq0 $ , $ \forall A\in F\left(S\right) $ .

2. $ P\left(S\right)=1 $ .

3. If $ A_{1} $ and $ A_{2} $ are disjoint events, then $ P\left(A_{1}\cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right) $ . If $ A_{1},A_{2}\in F\left(S\right) $ and $ A_{1}\cap A_{2}=\varnothing $ , then $ A_{1} $ and $ A_{2} $ are disjoint events.

4. If $ A_{1},A_{2},\cdots,A_{n},\cdots\in F\left(S\right) $ is a countable collection of disjointed events, then $ P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right) $ .

$ P\left(\cdot\right) $ is a set function. $ P\left(\cdot\right):F\left(S\right)\rightarrow\mathbf{R} $ .

• If you want to talk about the probability of a single output $ \omega_{0}\in S $ , you do so by considering the single event


Back to ECE600

Back to ECE 600 Prerequisites

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman