(New page: == Chebyshev inequality == Let <math>\mathbf{X}</math> be a random variable with mean <math>\mu</math> and variance <math>\sigma^{2}</math>. Then <math>\forall\epsilon>0</math> <math> ...)
 
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
== Chebyshev inequality ==
+
[[Category:random_variables]]
 +
[[Category:ECE600]]
 +
[[Category:Sangchun_Han]]
 +
 
 +
= Two Proofs of Chebyshev inequality=
 +
by [[user:han84|Sangchun Han]], PhD student in [[ECE]]
 +
----
 +
== Question: Prove Chebyshev's inequality: ==
  
 
Let <math>\mathbf{X}</math> be a random variable with mean <math>\mu</math>  and variance <math>\sigma^{2}</math>. Then <math>\forall\epsilon>0</math>  
 
Let <math>\mathbf{X}</math> be a random variable with mean <math>\mu</math>  and variance <math>\sigma^{2}</math>. Then <math>\forall\epsilon>0</math>  
  
<math>
+
:<math>
 
p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}.  
 
p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}.  
 
</math>
 
</math>
 
+
----
 +
==Answers==
 
=== Proof 1 ===
 
=== Proof 1 ===
 
[[Image:ECE600_Note_Chebyshev_inequality1.jpg‎]]
 
[[Image:ECE600_Note_Chebyshev_inequality1.jpg‎]]
Line 39: Line 47:
 
\therefore p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}.  
 
\therefore p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}.  
 
</math>
 
</math>
 
+
----
 +
==Discussion==
 +
----
 
=== Proof 2 ===
 
=== Proof 2 ===
  
Line 57: Line 67:
 
\therefore p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}.  
 
\therefore p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}.  
 
</math>
 
</math>
 +
----
 +
==Discussion==
 +
----
 +
[[ECE600|Back to ECE600]]
 +
 +
[[2010_Fall_ECE_600_Comer|Back to ECE 600, Fall 2010, Prof. Comer]]

Latest revision as of 10:26, 16 November 2010


Two Proofs of Chebyshev inequality

by Sangchun Han, PhD student in ECE


Question: Prove Chebyshev's inequality:

Let $ \mathbf{X} $ be a random variable with mean $ \mu $ and variance $ \sigma^{2} $. Then $ \forall\epsilon>0 $

$ p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}. $

Answers

Proof 1

ECE600 Note Chebyshev inequality1.jpg

Let $ g_{1}\left(\mathbf{X}\right)=\mathbf{1}_{\left\{ r\in\mathbf{R}:\left|\mathbf{X}-\mu\right|\geq\epsilon\right\} }\left(\mathbf{X}\right) $ and $ g_{2}\left(\mathbf{X}\right)=\frac{\left(\mathbf{X}-\mu\right)^{2}}{\epsilon^{2}}. $

Let $ \phi\left(\mathbf{X}\right)=g_{2}\left(\mathbf{X}\right)-g_{1}\left(\mathbf{X}\right)\Longrightarrow\phi\left(\mathbf{X}\right)\geq0,\;\forall\mathbf{X}\in\mathbf{R}. $

$ E\left[\phi\left(\mathbf{X}\right)\right]=E\left[g_{2}\left(\mathbf{X}\right)-g_{1}\left(\mathbf{X}\right)\right]=E\left[g_{2}\left(\mathbf{X}\right)\right]-E\left[g_{1}\left(\mathbf{X}\right)\right]=\frac{\sigma^{2}}{\epsilon^{2}}-p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right) $ and $ E\left[\phi\left(\mathbf{X}\right)\right]\geq0. $

$ \because E\left[g_{2}\left(\mathbf{X}\right)\right]=E\left[\frac{\left(\mathbf{X}-\mu\right)^{2}}{\epsilon^{2}}\right]=\frac{1}{\epsilon^{2}}E\left[\left(\mathbf{X}-\mu\right)^{2}\right]=\frac{\sigma^{2}}{\epsilon^{2}}. $

$ \therefore p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}. $


Discussion


Proof 2

$ E\left[\mathbf{X}\right]=\int_{0}^{\epsilon}xf_{\mathbf{X}}\left(x\right)dx+\int_{\epsilon}^{\infty}xf_{\mathbf{X}}\left(x\right)dx\geq\int_{\epsilon}^{\infty}xf_{\mathbf{X}}\left(x\right)dx\geq\int_{\epsilon}^{\infty}\epsilon f_{\mathbf{X}}\left(x\right)dx=\epsilon P\left(\left\{ \mathbf{X}\geq\epsilon\right\} \right). $

$ P\left(\left\{ \mathbf{X}\geq\epsilon\right\} \right)\leq\frac{E\left[\mathbf{X}\right]}{\epsilon}. $

$ P\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)=P\left(\left\{ \left(\mathbf{X}-\mu\right)^{2}\geq\epsilon^{2}\right\} \right)\leq\frac{E\left[\left(\mathbf{X}-\mu\right)^{2}\right]}{\epsilon^{2}}=\frac{\sigma^{2}}{\epsilon^{2}}. $

$ \therefore p\left(\left\{ \left|\mathbf{X}-\mu\right|\geq\epsilon\right\} \right)\leq\frac{\sigma^{2}}{\epsilon^{2}}. $


Discussion


Back to ECE600

Back to ECE 600, Fall 2010, Prof. Comer

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang