Line 4: | Line 4: | ||
a. Linearity | a. Linearity | ||
− | Given <math>v[n]=ax[n]+by[n]</math> | + | Given <math>v[n]=ax[n]+by[n]</math> ,then |
− | + | ||
− | + | ||
<math> | <math> | ||
Line 19: | Line 17: | ||
b. Modulation | b. Modulation | ||
− | Given <math>v[n]=x[n]e^{j\omega_0n}</math> | + | Given <math>v[n]=x[n]e^{j\omega_0n}</math> ,then |
+ | |||
+ | <math> | ||
+ | \begin{align} | ||
+ | V(\omega ,n) &= \sum_k v[k]w[n-k]e^{-j\omega k} \\ | ||
+ | &= \sum_k (x[k]e^{j\omega_0 k})w[n-k]e^{-j\omega k} \\ | ||
+ | &= \sum_k x[k]w[n-k]e^{-j(\omega -\omega_0)k} \\ | ||
+ | &= X(\omega -\omega_0 ,n) | ||
+ | \end{align} | ||
+ | </math> | ||
---- | ---- |
Latest revision as of 12:09, 10 November 2010
Solution of Week12 Quiz Question 4
a. Linearity
Given $ v[n]=ax[n]+by[n] $ ,then
$ \begin{align} V(\omega ,n) &= \sum_k v[k]w[n-k]e^{-j\omega k} \\ &= \sum_k (ax[k]+by[k])w[n-k]e^{-j\omega k} \\ &= \sum_k ax[k]w[n-k]e^{-j\omega k}+\sum_k by[k]w[n-k]e^{-j\omega k} \\ &= aX(\omega ,n)+bY(\omega ,n) \end{align} $
b. Modulation
Given $ v[n]=x[n]e^{j\omega_0n} $ ,then
$ \begin{align} V(\omega ,n) &= \sum_k v[k]w[n-k]e^{-j\omega k} \\ &= \sum_k (x[k]e^{j\omega_0 k})w[n-k]e^{-j\omega k} \\ &= \sum_k x[k]w[n-k]e^{-j(\omega -\omega_0)k} \\ &= X(\omega -\omega_0 ,n) \end{align} $