(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
== Homework 12 collaboration area ==
+
== Homework 12 Solutions ==
  
Can anyone explain how to get started on Page 517, Problems 5 & 7. I do not understand what these two problems are asking for, or how to start them.  Maybe the professor can quickly review in class on Wednesday morning?
+
517: 1.
 +
 
 +
<math>\hat{f}_c(w)=\sqrt{\frac{2}{\pi}}\left(
 +
\int_0^1(-1)\cos(wx)\,dx+
 +
\int_1^2(1)\cos(wx)\,dx
 +
\right)=
 +
</math>
 +
 
 +
<math>=\sqrt{\frac{2}{\pi}}\left([-\frac{1}{w}\sin(wx)]_0^1
 +
+[\frac{1}{w}\sin(wx)]_1^2\right)=
 +
</math>
 +
 
 +
<math>=\sqrt{\frac{2}{\pi}}\ \frac{1}{w}\left(
 +
-(\sin(w)-0)+(\sin(2w)-\sin(w))
 +
\right)=</math>
 +
 
 +
<math>=\sqrt{\frac{2}{\pi}}\ \frac{\sin(2w)-2\sin(w)}{w}.</math>
 +
 
 +
517: 2.
 +
 
 +
<math>\hat{f}_c(w)=\sqrt{\frac{2}{\pi}}\left(
 +
\int_0^k x\cos(wx)\,dx\right)=
 +
</math>
 +
 
 +
<math>=\sqrt{\frac{2}{\pi}}\left(\left[\frac{x}{w}\sin(wx)+\frac{1}{w^2}\cos(wx)\right]_0^k
 +
\right)=
 +
</math>
 +
 
 +
<math>\sqrt{\frac{2}{\pi}}\left(\frac{k}{w}\sin(kw)+\frac{1}{w^2}\cos(kw)
 +
-\frac{1}{w^2}\right).</math>
 +
 
 +
517: 5. See page 2 of Bell's 11/10/2010 lecture at
 +
[http://www.math.purdue.edu/~bell/MA527/Lectures/lec11-10.pdf Lesson 33]
 +
 
 +
517: 7. See
 +
[http://www.math.purdue.edu/~bell/MA527/HWK/p517_7.pdf p. 517: 7 Solution]
 +
 
 +
And for solutions to the three problems on p. 528, go to
 +
[http://www.math.purdue.edu/~bell/MA527/jing Bell's Jing things]
 +
 
 +
[http://www.math.purdue.edu/~bell/MA527/prac2solns.pdf Exam 2 Practice Problem Solutions]
  
  

Latest revision as of 11:06, 16 November 2010

Homework 12 Solutions

517: 1.

$ \hat{f}_c(w)=\sqrt{\frac{2}{\pi}}\left( \int_0^1(-1)\cos(wx)\,dx+ \int_1^2(1)\cos(wx)\,dx \right)= $

$ =\sqrt{\frac{2}{\pi}}\left([-\frac{1}{w}\sin(wx)]_0^1 +[\frac{1}{w}\sin(wx)]_1^2\right)= $

$ =\sqrt{\frac{2}{\pi}}\ \frac{1}{w}\left( -(\sin(w)-0)+(\sin(2w)-\sin(w)) \right)= $

$ =\sqrt{\frac{2}{\pi}}\ \frac{\sin(2w)-2\sin(w)}{w}. $

517: 2.

$ \hat{f}_c(w)=\sqrt{\frac{2}{\pi}}\left( \int_0^k x\cos(wx)\,dx\right)= $

$ =\sqrt{\frac{2}{\pi}}\left(\left[\frac{x}{w}\sin(wx)+\frac{1}{w^2}\cos(wx)\right]_0^k \right)= $

$ \sqrt{\frac{2}{\pi}}\left(\frac{k}{w}\sin(kw)+\frac{1}{w^2}\cos(kw) -\frac{1}{w^2}\right). $

517: 5. See page 2 of Bell's 11/10/2010 lecture at Lesson 33

517: 7. See p. 517: 7 Solution

And for solutions to the three problems on p. 528, go to Bell's Jing things

Exam 2 Practice Problem Solutions


Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett