(New page: Category:2010 Fall ECE 438 Boutin ---- == Solution to Q1 of Week 10 Quiz Pool == ---- a. The difference equation for this system is :<math>\begin{align} & Y(z) = az^{-1}Y(z)+X(z)-z^{...)
 
 
Line 24: Line 24:
  
 
----
 
----
 +
Credit: Prof. Charles Bouman
  
 
Back to [[ECE438_Week10_Quiz|Lab Week 10 Quiz Pool]]
 
Back to [[ECE438_Week10_Quiz|Lab Week 10 Quiz Pool]]

Latest revision as of 18:00, 26 October 2010



Solution to Q1 of Week 10 Quiz Pool


a. The difference equation for this system is

$ \begin{align} & Y(z) = az^{-1}Y(z)+X(z)-z^{-1}X(z) \\ & H(z) = \frac{Y(z)}{X(z)} = \frac{1-z^{-1}}{1-az^{-1}} \\ \end{align}\,\! $
poles at $ z=a $ and zeros at $ z=1 $.

b. ROC $ |z|>a $

$ H(z)=\frac{1}{1-az^{-1}}-\frac{z^{-1}}{1-az^{-1}} $
$ \Rightarrow h[n]=a^{n}u[n]-a^{n-1}u[n-1] $
The system is stable if ROC contains the unit circle ($ |z|=1 $), therefore $ |a|<1 $.

c. ROC $ |z|<a $

$ H(z)=\frac{1}{1-az^{-1}}-\frac{z^{-1}}{1-az^{-1}} $
$ \Rightarrow h[n]=-a^{n}u[-n-1]+a^{n-1}u[-(n-1)-1] $
$ \Rightarrow h[n]=-a^{n}u[-n-1]+a^{n-1}u[-n] $
The system is stable if ROC contains the unit circle ($ |z|=1 $), therefore $ |a|>1 $.

Credit: Prof. Charles Bouman

Back to Lab Week 10 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

EISL lab graduate

Mu Qiao