(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
= Practice Question 2, [[ECE438]] Fall 2010, [[User:Mboutin|Prof. Boutin]] =
+
[[Category:problem solving]]
  
<span style="color:blue">On Computing the z-tramsfprm of a discrete-time signal.</span>  
+
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
  
 +
Topic: Computing a z-transform
 +
 +
</center>
 +
( [[:Category:Problem_solving|Practice Question]] 2, [[ECE438]] Fall 2010, [[User:Mboutin|Prof. Boutin]] )
 
----
 
----
<div><span style="color:blue">  Compute the z-transform of the discrete-time signal  
+
==Question==
 +
<div><span style="color:purple">  Compute the z-transform of the discrete-time signal  
  
<math>{\color{blue} x[n]= 4^n \left(u[n+3]-u[n-4] \right) }</math>.  
+
<math> x[n]= 4^n \left(u[n+3]-u[n-4] \right) </math>.  
  
  
 
Note: there are two tricky parts in this problem. Do you know what they are?
 
Note: there are two tricky parts in this problem. Do you know what they are?
 
  
 
Post Your answer/questions below.
 
Post Your answer/questions below.
 
 
 
</span></div>  
 
</span></div>  
 
----
 
----
 
 
== Solution 1 ==
 
== Solution 1 ==
  
Line 83: Line 86:
  
 
[[Category:2010_Fall_ECE_438_Boutin]]
 
[[Category:2010_Fall_ECE_438_Boutin]]
 +
[[Category:z-transform]]

Latest revision as of 11:48, 26 November 2013


Practice Question on "Digital Signal Processing"

Topic: Computing a z-transform

( Practice Question 2, ECE438 Fall 2010, Prof. Boutin )


Question

Compute the z-transform of the discrete-time signal

$ x[n]= 4^n \left(u[n+3]-u[n-4] \right) $.


Note: there are two tricky parts in this problem. Do you know what they are?

Post Your answer/questions below.


Solution 1

x[n] = 4nu[n + 3] − 4nu[n − 4]

$ x[n] = \sum_{n=-\infty}^{\infty} 4^n u[n+3] z^{-n} - \sum_{n=-\infty}^{\infty} 4^n u[n-4] z^{-n} $

$ {\color{red}\not}x {\color{red}\not}[n] {\color{red}X(z)} = \sum_{n=3}^{\infty} 4^n z^{-n} - \sum_{n=-\infty}^{4} 4^n z^{-n} $

$ {\color{red}\not}x {\color{red}\not}[n] {\color{red}X(z)}= \sum_{n=0}^{\infty} (\frac{4}{z})^n - 1 - 4^1z^{-1} - 4^2z^{-2} - 4^3z^{-3} - \sum_{n=4}^{\infty} (\frac{4}{z})^n $

this is the mistake I made on my exam - could you please clarify my work, professor?

  • Certainly! This is a very common mistake: splitting a sum that converges for most z's into two sums that diverge for most z's. The key is to notice that the first sum above has a finite number of terms: so convergence of the entire sum is guaranteed, unless one (or more) of the terms of the sum diverge (for example, 1/z diverges when z=0). Observe that, by splitting the sum this way, you get an empty ROC. The correct ROC for this z-transform is actually all the finite complex plane except zero. -pm
  • Another thing I see is the manipulation of the sum with negative indices, namely :
$ {\color{green}\sum_{n=-\infty}^{4} 4^n z^{-n } = \sum_{n=4}^{\infty}(\frac{4}{z})^n } $
which is incorrect. The correct way to manipulate it is the following:
$ \begin{align} \sum_{n=-\infty}^{4} 4^n z^{-n } &= \sum_{k=\infty}^{-4} 4^{-k} z^{k } \text{ (letting }k=-n), \\ &= \sum_{k=-4}^{\infty} 4^{-k} z^{k } \text{ (since the order of the terms in the sum does not matter)}, \\ &= 4^{4}z^{-4}+4^{3}z^{-3}+4^{2}z^{-2}+4^{1}z^{-1}+ \sum_{k=0}^{\infty} 4^{-k} z^{k } \end{align} $
Hope that helps! -pm


$ X(z) =\sum_{n=0}^{\infty} (\frac{4}{z})^n - 1 - 4z - 4^2z^{2} - 4^3z^{3} - (4^{4}z^{-4}+4^{3}z^{-3}+4^{2}z^{-2}+4^{1}z^{-1}+ \sum_{k=0}^{\infty} 4^{-k} z^{k }) $

Or better yet:
$ X(z) =\sum_{n=-3}^{3} (\frac{4}{z})^n $ -pm



  • Answer/question

Note: although the signal given looks very similar to

$ {\color{blue} x_1[n]= 4^n u[n+3]- 2^n u[n-4] } $.

and to

$ {\color{blue} x_2[n]= 4^n u[n+3]- 2^n u[-n-4] } $.

the computation of the z-transform is very different. -pm


  • Comment/answer/question
  • Comment/answer/question

Previous practice problem

Next practice problem


Back to 2010 Fall ECE 438 Boutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett