(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
= Practice Question 1, [[ECE438]] Fall 2010, [[User:Mboutin|Prof. Boutin]] =
+
[[Category:problem solving]]
On Computing the DFT of a discrete-time periodic signal
+
[[Category:ECE438]]
 +
[[Category:discrete Fourier transform]]
 +
 
 +
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 
 +
Topic: Discrete Fourier Transform
 +
 
 +
(On Computing the DFT of a discrete-time periodic signal.)
 +
</center>
 
----
 
----
 +
==Question==
 
Compute the discrete Fourier transform of the discrete-time signal  
 
Compute the discrete Fourier transform of the discrete-time signal  
  
Line 9: Line 20:
 
----
 
----
 
Post Your answer/questions below.
 
Post Your answer/questions below.
 
+
----
 +
==Answer 1==
 
<math>X [k] = \sum_{k=0}^{N-1} x[n].e^{-j.2\pi k n/N}</math>
 
<math>X [k] = \sum_{k=0}^{N-1} x[n].e^{-j.2\pi k n/N}</math>
  
Line 45: Line 57:
 
- AJFunche <span style="color:green"> Nice effort! -pm----
 
- AJFunche <span style="color:green"> Nice effort! -pm----
 
----
 
----
 +
==Answer 2==
 
<math>x[n] = \frac{1}{N}\sum_{k=0}^{N-1} X[k]e^{j2\pi k\frac{n}{N}}</math>
 
<math>x[n] = \frac{1}{N}\sum_{k=0}^{N-1} X[k]e^{j2\pi k\frac{n}{N}}</math>
  
Line 75: Line 88:
 
X[2] = 3  
 
X[2] = 3  
 
----
 
----
 +
==Answer 3==
 +
This could easily be shown that due to the modulation property that this is a shifted delta in the DFT world.
 +
But to do a little mathematical proof....
 +
<math>
 +
\begin{align}
 +
X [k] &= \sum_{n=0}^{N-1} x[n]e^{\frac{-j2\pi k n}{N}} \\
 +
&= \sum_{n=0}^{N-1} e^{-j\frac{2}{3}\pi n}e^{\frac{-j2\pi k n}{N}} \text{ where N=3 because of periodicity of the signal} \\
 +
&= \sum_{n=0}^{2} e^{j\frac{4}{3}\pi n}e^{-j \frac{2}{3} \pi n k} \\
 +
&= \sum_{n=0}^{2} e^{-j\frac{2}{3}\pi n (k-2)}
 +
\end{align}
 +
</math>
  
*Answer/question
+
Now to get the final result you must compare this equation to the IDFT formula and you get that
 +
 
 +
<math>
 +
\begin{align}
 +
X [k] &= \sum_{n=0}^{N-1} x[n]e^{\frac{-j2\pi k n}{N}} &= 3 \delta (k-2)
 +
\end{align}
 +
</math>
 +
 
 +
In class we compared the IDFT and the Fourier Series expansion and the Fourier coefficients can be expressed (if I remember correctly) as
 +
 
 +
<math >
 +
A_{k}= \frac{X[k]}{N}
 +
</math>
 +
 
 +
:<span style="color:purple"> This is a different and interesting way of looking at the problem. -pm----
 +
 
 +
:<span style="color:green"> But does that mean my solution is wrong or just unique...? - my
 +
----
 
*Answer/question
 
*Answer/question
 
----
 
----

Latest revision as of 13:22, 21 April 2013


Practice Question on "Digital Signal Processing"

Topic: Discrete Fourier Transform

(On Computing the DFT of a discrete-time periodic signal.)


Question

Compute the discrete Fourier transform of the discrete-time signal

$ x[n]= e^{-j \frac{2}{3} \pi n} $.

How does your answer related to the Fourier series coefficients of x[n]?


Post Your answer/questions below.


Answer 1

$ X [k] = \sum_{k=0}^{N-1} x[n].e^{-j.2\pi k n/N} $

$ N=3 $ That's correct! -pm

$ x[n]= e^{-j \frac{2}{3} \pi n} $

$ X [k] = \sum_{k=0}^{2}e^{-j(n)(\frac{2}{3}\pi)(1+k)} $ You are using the long route, instead of the short route. -pm

$ X [k] = 1+ e^{-j(1)(\frac{2}{3}\pi)(1+k)} +e^{-j\frac{4}{3}\pi(1+k)} $ This gives you a very complicated answer. -pm

$ X [0] = 1+ e^{-j(\frac{2}{3}\pi)(1+0)} +e^{-j\frac{4}{3}\pi(1+0)} $

$ X [0] = 1+ e^{-j(\frac{2}{3}\pi)} +e^{-j(\frac{4}{3}\pi)} $

complex result: Noting $ -2/3\pi $ and $ -4/3\pi $ are conjugates cancel the imaginary component.

$ 1+cos(-2/3\pi) +cos(-4/3\pi) = X[0] = 0 $

$ X [1] = 1+ e^{-j(\frac{2}{3}\pi)(1+1)} +e^{-j\frac{4}{3}\pi(1+1)} $

$ X [1] = 1+ e^{-j(\frac{4}{3}\pi)} +e^{-j\frac{8}{3}\pi} $

complex result: Noting $ -4/3\pi $ and $ -8/3\pi $ are conjugates cancel the imaginary component.

$ 1+cos(-4/3\pi) +cos(-8/3\pi) = X[1] = 0 $

$ X [2] = 1+ e^{-j(\frac{2}{3}\pi)(1+2)} +e^{-j\frac{4}{3}\pi(1+2)} $

$ X [2] = 1+ e^{-j(2\pi)} +e^{-j(4\pi)} $

$ X [2] = 1+ 1 + 1 = 3 $


- AJFunche Nice effort! -pm----


Answer 2

$ x[n] = \frac{1}{N}\sum_{k=0}^{N-1} X[k]e^{j2\pi k\frac{n}{N}} $

$ x[n] = \frac{1}{3}\sum_{k=0}^{2} X[k]e^{j\frac{2\pi}{3}kn} $

$ x[n] = \frac{1}{3} \cdot (X[0] + X[1]e^{j(\frac{2\pi}{3}(1)n )} + X[2]e^{j(\frac{2\pi}{3}(2)n)}) $

Notice that all the powers of e in this expression are positive, but the signal x[n] is expressed as a negative power of e, so you cannot compare just yet. -pm

whoops, I was doing the homework. is that correct? - ksoong

Tecnically yes, but not realy useful for computing the DFT. Instead, use the fact that $ e^{ 2 \pi n j}=1 $ to rewrite x[n] as a positive power of e. (Just add $ 2 \pi n j $ to the exponent of e). -pm

$ \begin{align} x[n]&= e^{-j \frac{2}{3} \pi n} \\ &= e^{-j \frac{2}{3} \pi n} e^{j 2 \pi n} \text{ (since this is the same as multiplying by one, for any integer n)}\\ &= e^{-j \frac{2}{3} \pi n +j 2 \pi n } \\ & = e^{j \frac{4}{3} \pi n} \\ & = e^{j 2 \frac{2\pi n }{3} } \end{align} $

Now compare with the inverse DFT formula.

$ e^{j 2 \frac{2\pi n }{3} } \ \ compare \ with \ \ \frac{1}{3} \cdot (X[0] + X[1]e^{j(\frac{2\pi}{3}n)} + X[2]e^{j(\frac{2\pi}{3}(2)n)}) $

X[0] = 0

X[1] = 0

X[2] = 3


Answer 3

This could easily be shown that due to the modulation property that this is a shifted delta in the DFT world. But to do a little mathematical proof.... $ \begin{align} X [k] &= \sum_{n=0}^{N-1} x[n]e^{\frac{-j2\pi k n}{N}} \\ &= \sum_{n=0}^{N-1} e^{-j\frac{2}{3}\pi n}e^{\frac{-j2\pi k n}{N}} \text{ where N=3 because of periodicity of the signal} \\ &= \sum_{n=0}^{2} e^{j\frac{4}{3}\pi n}e^{-j \frac{2}{3} \pi n k} \\ &= \sum_{n=0}^{2} e^{-j\frac{2}{3}\pi n (k-2)} \end{align} $

Now to get the final result you must compare this equation to the IDFT formula and you get that

$ \begin{align} X [k] &= \sum_{n=0}^{N-1} x[n]e^{\frac{-j2\pi k n}{N}} &= 3 \delta (k-2) \end{align} $

In class we compared the IDFT and the Fourier Series expansion and the Fourier coefficients can be expressed (if I remember correctly) as

$ A_{k}= \frac{X[k]}{N} $

This is a different and interesting way of looking at the problem. -pm----
But does that mean my solution is wrong or just unique...? - my

  • Answer/question

Next practice problem


Back to 2010 Fall ECE 438 Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang