(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
= Practice Question 3, [[ECE438]] Fall 2010, [[User:Mboutin|Prof. Boutin]] =
+
[[Category:problem solving]]
On computing the inverse z-transform of a discrete-time signal.
+
 
 +
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 
 +
Topic: Computing an inverse z-transform
 +
 
 +
</center>
 +
([[:Category:Problem_solving|Practice Question]] 3, [[ECE438]] Fall 2010, [[User:Mboutin|Prof. Boutin]])
 
----
 
----
 +
==Question==
 
Compute the inverse z-transform of  
 
Compute the inverse z-transform of  
  
 
<math>X(z) = \log \left( 1+z \right), \quad |z|<1 </math>.  
 
<math>X(z) = \log \left( 1+z \right), \quad |z|<1 </math>.  
  
Hist: expand the function into a power series using either the Taylor series formula or a [[PowerSeriesFormulas|table of power series formulas]].
+
Hint: expand the function into a power series using either the Taylor series formula or a [[PowerSeriesFormulas|table of power series formulas]].
 
----
 
----
 
Post Your answer/questions below.
 
Post Your answer/questions below.
*Answer/question
+
 
 +
The power series expansion of the given function is:
 +
 
 +
<math>\begin{align}
 +
X(z) &= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n}, \ -1 < z \le 1 \\
 +
&= \sum_{n=-\infty}^{\infty} (-1)^{n+1} u[n-1] \frac{z^n}{n}
 +
\end{align}</math>
 +
 
 +
Substitute n = -k
 +
 
 +
<math>\begin{align}
 +
X(z) &= \sum_{k=-\infty}^{\infty} (-1)^{-k+1} u[-k-1] \frac{z^{-k}}{-k} \\
 +
&= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k+1}}{-k} u[-k-1]z^{-k} \\
 +
&= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k}(-1)}{-k} u[-k-1] z^{-k} \\
 +
&= \sum_{k=-\infty}^{\infty}\frac{(-1)^{-k}}{k} u[-k-1]z^{-k}, \text{ and by comparison with } X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}
 +
\end{align}</math>
 +
 
 +
<math>\begin{align}
 +
x[n] &= \frac{(-1)^{-n}}{n} u[-n-1] \\
 +
&= \frac{(-1)^{n}}{n} u[-n-1]
 +
\end{align}</math>
 +
 
 +
since it doesn't matter if the (-1) is in the num or denom.
 +
----
 
*Answer/question
 
*Answer/question
 
*Answer/question
 
*Answer/question

Latest revision as of 11:49, 26 November 2013


Practice Question on "Digital Signal Processing"

Topic: Computing an inverse z-transform

(Practice Question 3, ECE438 Fall 2010, Prof. Boutin)


Question

Compute the inverse z-transform of

$ X(z) = \log \left( 1+z \right), \quad |z|<1 $.

Hint: expand the function into a power series using either the Taylor series formula or a table of power series formulas.


Post Your answer/questions below.

The power series expansion of the given function is:

$ \begin{align} X(z) &= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n}, \ -1 < z \le 1 \\ &= \sum_{n=-\infty}^{\infty} (-1)^{n+1} u[n-1] \frac{z^n}{n} \end{align} $

Substitute n = -k

$ \begin{align} X(z) &= \sum_{k=-\infty}^{\infty} (-1)^{-k+1} u[-k-1] \frac{z^{-k}}{-k} \\ &= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k+1}}{-k} u[-k-1]z^{-k} \\ &= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k}(-1)}{-k} u[-k-1] z^{-k} \\ &= \sum_{k=-\infty}^{\infty}\frac{(-1)^{-k}}{k} u[-k-1]z^{-k}, \text{ and by comparison with } X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} \end{align} $

$ \begin{align} x[n] &= \frac{(-1)^{-n}}{n} u[-n-1] \\ &= \frac{(-1)^{n}}{n} u[-n-1] \end{align} $

since it doesn't matter if the (-1) is in the num or denom.


  • Answer/question
  • Answer/question
  • Answer/question

Previous practice problem

Next practice problem

Back to 2010 Fall ECE 438 Boutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett