(9 intermediate revisions by 3 users not shown)
Line 1: Line 1:
= Practice Question 4, [[ECE438]] Fall 2010, [[User:Mboutin|Prof. Boutin]] =
+
[[Category:problem solving]]
On computing the inverse z-tramsfprm of a discrete-time signal.
+
 
 +
<center><font size= 4>
 +
'''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]'''
 +
</font size>
 +
 
 +
Topic: Computing an inverse z-transform
 +
 
 +
</center>
 +
([[:Category:Problem_solving|Practice Question]] 3, [[ECE438]] Fall 2010, [[User:Mboutin|Prof. Boutin]])
 
----
 
----
 +
==Question==
 
Compute the inverse z-transform of  
 
Compute the inverse z-transform of  
  
 
<math>X(z) = \log \left( 1+z \right), \quad |z|<1 </math>.  
 
<math>X(z) = \log \left( 1+z \right), \quad |z|<1 </math>.  
  
Hist: expand the function into a power series using either the Taylor series formula or a [[PowerSeriesFormulas|table of power series formulas]].
+
Hint: expand the function into a power series using either the Taylor series formula or a [[PowerSeriesFormulas|table of power series formulas]].
 
----
 
----
 
Post Your answer/questions below.
 
Post Your answer/questions below.
*Answer/question
+
 
 +
The power series expansion of the given function is:
 +
 
 +
<math>\begin{align}
 +
X(z) &= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n}, \ -1 < z \le 1 \\
 +
&= \sum_{n=-\infty}^{\infty} (-1)^{n+1} u[n-1] \frac{z^n}{n}
 +
\end{align}</math>
 +
 
 +
Substitute n = -k
 +
 
 +
<math>\begin{align}
 +
X(z) &= \sum_{k=-\infty}^{\infty} (-1)^{-k+1} u[-k-1] \frac{z^{-k}}{-k} \\
 +
&= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k+1}}{-k} u[-k-1]z^{-k} \\
 +
&= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k}(-1)}{-k} u[-k-1] z^{-k} \\
 +
&= \sum_{k=-\infty}^{\infty}\frac{(-1)^{-k}}{k} u[-k-1]z^{-k}, \text{ and by comparison with } X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}
 +
\end{align}</math>
 +
 
 +
<math>\begin{align}
 +
x[n] &= \frac{(-1)^{-n}}{n} u[-n-1] \\
 +
&= \frac{(-1)^{n}}{n} u[-n-1]
 +
\end{align}</math>
 +
 
 +
since it doesn't matter if the (-1) is in the num or denom.
 +
----
 
*Answer/question
 
*Answer/question
 
*Answer/question
 
*Answer/question
 
*Answer/question
 
*Answer/question
 
----
 
----
 +
[[Practice_Question_2_ECE439F10|Previous practice problem]]
 +
 +
[[Practice_Question_4_ECE438F10|Next practice problem]]
  
 
[[2010 Fall ECE 438 Boutin|Back to 2010 Fall ECE 438 Boutin]]  
 
[[2010 Fall ECE 438 Boutin|Back to 2010 Fall ECE 438 Boutin]]  
  
 
[[Category:2010_Fall_ECE_438_Boutin]]
 
[[Category:2010_Fall_ECE_438_Boutin]]

Latest revision as of 11:49, 26 November 2013


Practice Question on "Digital Signal Processing"

Topic: Computing an inverse z-transform

(Practice Question 3, ECE438 Fall 2010, Prof. Boutin)


Question

Compute the inverse z-transform of

$ X(z) = \log \left( 1+z \right), \quad |z|<1 $.

Hint: expand the function into a power series using either the Taylor series formula or a table of power series formulas.


Post Your answer/questions below.

The power series expansion of the given function is:

$ \begin{align} X(z) &= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n}, \ -1 < z \le 1 \\ &= \sum_{n=-\infty}^{\infty} (-1)^{n+1} u[n-1] \frac{z^n}{n} \end{align} $

Substitute n = -k

$ \begin{align} X(z) &= \sum_{k=-\infty}^{\infty} (-1)^{-k+1} u[-k-1] \frac{z^{-k}}{-k} \\ &= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k+1}}{-k} u[-k-1]z^{-k} \\ &= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k}(-1)}{-k} u[-k-1] z^{-k} \\ &= \sum_{k=-\infty}^{\infty}\frac{(-1)^{-k}}{k} u[-k-1]z^{-k}, \text{ and by comparison with } X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} \end{align} $

$ \begin{align} x[n] &= \frac{(-1)^{-n}}{n} u[-n-1] \\ &= \frac{(-1)^{n}}{n} u[-n-1] \end{align} $

since it doesn't matter if the (-1) is in the num or denom.


  • Answer/question
  • Answer/question
  • Answer/question

Previous practice problem

Next practice problem

Back to 2010 Fall ECE 438 Boutin

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva