(New page: = Practice Question 4, ECE438 Fall 2010, Prof. Boutin = On computing the inverse z-tramsfprm of a discrete-time signal. ---- Compute the inverse z-transform of <math...) |
|||
(10 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | = Practice Question | + | [[Category:problem solving]] |
− | + | ||
+ | <center><font size= 4> | ||
+ | '''[[Digital_signal_processing_practice_problems_list|Practice Question on "Digital Signal Processing"]]''' | ||
+ | </font size> | ||
+ | |||
+ | Topic: Computing an inverse z-transform | ||
+ | |||
+ | </center> | ||
+ | ([[:Category:Problem_solving|Practice Question]] 3, [[ECE438]] Fall 2010, [[User:Mboutin|Prof. Boutin]]) | ||
---- | ---- | ||
+ | ==Question== | ||
Compute the inverse z-transform of | Compute the inverse z-transform of | ||
− | <math>X(z) = \log \left( 1+z \right) </math>. | + | <math>X(z) = \log \left( 1+z \right), \quad |z|<1 </math>. |
− | + | Hint: expand the function into a power series using either the Taylor series formula or a [[PowerSeriesFormulas|table of power series formulas]]. | |
---- | ---- | ||
Post Your answer/questions below. | Post Your answer/questions below. | ||
− | + | ||
+ | The power series expansion of the given function is: | ||
+ | |||
+ | <math>\begin{align} | ||
+ | X(z) &= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n}, \ -1 < z \le 1 \\ | ||
+ | &= \sum_{n=-\infty}^{\infty} (-1)^{n+1} u[n-1] \frac{z^n}{n} | ||
+ | \end{align}</math> | ||
+ | |||
+ | Substitute n = -k | ||
+ | |||
+ | <math>\begin{align} | ||
+ | X(z) &= \sum_{k=-\infty}^{\infty} (-1)^{-k+1} u[-k-1] \frac{z^{-k}}{-k} \\ | ||
+ | &= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k+1}}{-k} u[-k-1]z^{-k} \\ | ||
+ | &= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k}(-1)}{-k} u[-k-1] z^{-k} \\ | ||
+ | &= \sum_{k=-\infty}^{\infty}\frac{(-1)^{-k}}{k} u[-k-1]z^{-k}, \text{ and by comparison with } X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} | ||
+ | \end{align}</math> | ||
+ | |||
+ | <math>\begin{align} | ||
+ | x[n] &= \frac{(-1)^{-n}}{n} u[-n-1] \\ | ||
+ | &= \frac{(-1)^{n}}{n} u[-n-1] | ||
+ | \end{align}</math> | ||
+ | |||
+ | since it doesn't matter if the (-1) is in the num or denom. | ||
+ | ---- | ||
*Answer/question | *Answer/question | ||
*Answer/question | *Answer/question | ||
*Answer/question | *Answer/question | ||
---- | ---- | ||
+ | [[Practice_Question_2_ECE439F10|Previous practice problem]] | ||
+ | |||
+ | [[Practice_Question_4_ECE438F10|Next practice problem]] | ||
[[2010 Fall ECE 438 Boutin|Back to 2010 Fall ECE 438 Boutin]] | [[2010 Fall ECE 438 Boutin|Back to 2010 Fall ECE 438 Boutin]] | ||
[[Category:2010_Fall_ECE_438_Boutin]] | [[Category:2010_Fall_ECE_438_Boutin]] |
Latest revision as of 11:49, 26 November 2013
Practice Question on "Digital Signal Processing"
Topic: Computing an inverse z-transform
(Practice Question 3, ECE438 Fall 2010, Prof. Boutin)
Question
Compute the inverse z-transform of
$ X(z) = \log \left( 1+z \right), \quad |z|<1 $.
Hint: expand the function into a power series using either the Taylor series formula or a table of power series formulas.
Post Your answer/questions below.
The power series expansion of the given function is:
$ \begin{align} X(z) &= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{z^n}{n}, \ -1 < z \le 1 \\ &= \sum_{n=-\infty}^{\infty} (-1)^{n+1} u[n-1] \frac{z^n}{n} \end{align} $
Substitute n = -k
$ \begin{align} X(z) &= \sum_{k=-\infty}^{\infty} (-1)^{-k+1} u[-k-1] \frac{z^{-k}}{-k} \\ &= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k+1}}{-k} u[-k-1]z^{-k} \\ &= \sum_{k=-\infty}^{\infty} \frac{(-1)^{-k}(-1)}{-k} u[-k-1] z^{-k} \\ &= \sum_{k=-\infty}^{\infty}\frac{(-1)^{-k}}{k} u[-k-1]z^{-k}, \text{ and by comparison with } X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n} \end{align} $
$ \begin{align} x[n] &= \frac{(-1)^{-n}}{n} u[-n-1] \\ &= \frac{(-1)^{n}}{n} u[-n-1] \end{align} $
since it doesn't matter if the (-1) is in the num or denom.
- Answer/question
- Answer/question
- Answer/question