(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | == Homework 6 | + | == Homework 6 Solutions == |
p. 226: 1. | p. 226: 1. | ||
Line 88: | Line 88: | ||
<math>\mathcal{L}^{-1}[\frac{1}{s^2+5}-\frac{1}{s+5}]=\mathcal{L}^{-1}[\frac{1}{\sqrt{5}}*\frac{\sqrt{5}}{s^2+\sqrt{5}^2}-\frac{1}{s-(-5)}]</math> | <math>\mathcal{L}^{-1}[\frac{1}{s^2+5}-\frac{1}{s+5}]=\mathcal{L}^{-1}[\frac{1}{\sqrt{5}}*\frac{\sqrt{5}}{s^2+\sqrt{5}^2}-\frac{1}{s-(-5)}]</math> | ||
− | |||
− | |||
− | |||
[[2010 MA 527 Bell|Back to the MA 527 start page]] | [[2010 MA 527 Bell|Back to the MA 527 start page]] |
Latest revision as of 08:12, 11 November 2010
Homework 6 Solutions
p. 226: 1.
$ \mathcal{L}[t^2-2t]= \mathcal{L}[t^2]-2\mathcal{L}[t] $
$ = \frac{2}{s^3}-2\frac{1}{s^2} $
Odd solutions in the back of the book.
p. 226: #2:
$ \mathcal(t^2 - 3)^2 $
$ = (t^2 - 3)(t^2 - 3) = t^4 - 6t^2 + 9 $
So
$ \mathcal{L}[(t^2-3)^2] = \mathcal{L}[t^4]-6\mathcal{L}[t^2]+9\mathcal{L}[1]= $
$ = \frac{4!}{s^5} - 6\frac{2!}{s^3} + \frac{9}{s} $
p. 226: #4:
$ \ sin^2 4 t = \frac {1 - cos2(4t)}{2} $
So the Laplace Transform can be gotten from the table.
p. 226: #23.
$ \mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt=F(s). $
So
$ \mathcal{L}[f(ct)]=\int_0^\infty e^{-st}f(ct)\ dt. $
Make the change of variables
$ \tau=ct $
to get
$ \mathcal{L}[f(ct)]=\int_{\tau=0}^\infty e^{-(s/c)\tau}f(\tau)\ (1/c) d\tau= $
$ \frac{1}{c}F(s/c). $
Even solutions (added by Adam M on Oct 5, please check results):
p. 226: 10.
$ \mathcal{L}[-8sin(0.2t)]=\frac{-1.6}{s^2+0.04} $
p. 226: 12.
$ \mathcal{L}[(t+1)^3]=\frac{6}{s^4}+\frac{6}{s^3}+\frac{3}{s^2}+\frac{1}{s} $
p. 226: 30.
$ \mathcal{L}^{-1}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t) $
(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get
$ \mathcal{L}^{-1}=-e^{-4t}+3e^{4t} $
AJ, I was able to get your answer and verified that it is correct. However, I am unable to see why my initial answer was wrong. I seperated as follows:
$ \mathcal{L}^{-1}[2*\frac{s}{s^2-4^2}+4*\frac{4}{s^2-4^2}] $
then used (8) and (9) from Table 6.1. Thoughts?
They are actually the exact same thing, so both answers should be correct. This can be proven using:
cosh(bx) = (1/2)*(e^(bx) + e^(-bx))
sinh(bx) = (1/2)*(e^(bx) - e^(-bx))
--Idougla 23:40, 7 October 2010 (UTC)
Thank you!
P. 226: 39. Can somebody post a solution for 39? I must be missing something on this one.
Re-write as:
$ \mathcal{L}^{-1}[\frac{1}{s^2+5}-\frac{1}{s+5}]=\mathcal{L}^{-1}[\frac{1}{\sqrt{5}}*\frac{\sqrt{5}}{s^2+\sqrt{5}^2}-\frac{1}{s-(-5)}] $