(41 intermediate revisions by 7 users not shown)
Line 1: Line 1:
== Homework 6 collaboration area ==
+
== Homework 6 Solutions ==
  
Here is something to get you started:
+
p. 226: 1.
  
<math>\mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt</math>
+
<math>\mathcal{L}[t^2-2t]= \mathcal{L}[t^2]-2\mathcal{L}[t]</math>
  
<math>\mathcal{L}[f'(t)]= sF(s)-f(0)</math>
+
<math>= \frac{2}{s^3}-2\frac{1}{s^2}</math>
  
p. 226: 1.
+
Odd solutions in the back of the book.
  
<math>\mathcal{L}[t^2-2t]= \frac{2}{s^3}-2\frac{1}{s^2}</math>
+
p. 226: #2:
  
Odd solutions in the back of the book.
+
<math>\mathcal(t^2 - 3)^2</math>
  
-Does anyone have a hint on solving #23?
+
<math> = (t^2 - 3)(t^2 - 3) = t^4 - 6t^2 + 9 </math>
 +
 
 +
So
 +
 
 +
<math>\mathcal{L}[(t^2-3)^2] =
 +
\mathcal{L}[t^4]-6\mathcal{L}[t^2]+9\mathcal{L}[1]=</math>
 +
 
 +
 
 +
<math> = \frac{4!}{s^5} - 6\frac{2!}{s^3} + \frac{9}{s}</math>
 +
 
 +
 
 +
p. 226: #4:
 +
 
 +
<math>\ sin^2 4 t = \frac {1 - cos2(4t)}{2} </math>
 +
 
 +
So the Laplace Transform can be gotten from the table.
 +
 
 +
p. 226: #23.
 +
 
 +
<math>\mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt=F(s).</math>
 +
 
 +
So
 +
 
 +
<math>\mathcal{L}[f(ct)]=\int_0^\infty e^{-st}f(ct)\ dt.</math>
 +
 
 +
Make the change of variables
 +
 
 +
<math>\tau=ct</math>
 +
 
 +
to get
 +
 
 +
<math>\mathcal{L}[f(ct)]=\int_{\tau=0}^\infty e^{-(s/c)\tau}f(\tau)\ (1/c) d\tau=</math>
 +
 
 +
<math>\frac{1}{c}F(s/c).</math>
  
 
Even solutions (added by Adam M on Oct 5, please check results):
 
Even solutions (added by Adam M on Oct 5, please check results):
Line 27: Line 60:
 
p. 226: 30.
 
p. 226: 30.
  
<math>inverse \mathcal{L}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t)</math>
+
<math>\mathcal{L}^{-1}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t)</math>
 +
 
 +
(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get
 +
<math>\mathcal{L}^{-1}=-e^{-4t}+3e^{4t}</math>
 +
 
 +
AJ, I was able to get your answer and verified that it is correct.  However, I am unable to see why my initial answer was wrong.  I seperated as follows:
 +
 
 +
<math>\mathcal{L}^{-1}[2*\frac{s}{s^2-4^2}+4*\frac{4}{s^2-4^2}]</math>
 +
 
 +
then used (8) and (9) from Table 6.1.  Thoughts?
 +
 
 +
They are actually the exact same thing, so both answers should be correct. This can be proven using:
 +
 
 +
cosh(bx) = (1/2)*(e^(bx) + e^(-bx))
 +
 
 +
sinh(bx) = (1/2)*(e^(bx) - e^(-bx))
 +
 
 +
--[[User:Idougla|Idougla]] 23:40, 7 October 2010 (UTC)
 +
 
 +
Thank you!
 +
 
 +
P. 226: 39.
 +
Can somebody post a solution for 39?  I must be missing something on this one.
 +
 
 +
Re-write as:
 +
 
 +
<math>\mathcal{L}^{-1}[\frac{1}{s^2+5}-\frac{1}{s+5}]=\mathcal{L}^{-1}[\frac{1}{\sqrt{5}}*\frac{\sqrt{5}}{s^2+\sqrt{5}^2}-\frac{1}{s-(-5)}]</math>
  
  

Latest revision as of 08:12, 11 November 2010

Homework 6 Solutions

p. 226: 1.

$ \mathcal{L}[t^2-2t]= \mathcal{L}[t^2]-2\mathcal{L}[t] $

$ = \frac{2}{s^3}-2\frac{1}{s^2} $

Odd solutions in the back of the book.

p. 226: #2:

$ \mathcal(t^2 - 3)^2 $

$ = (t^2 - 3)(t^2 - 3) = t^4 - 6t^2 + 9 $

So

$ \mathcal{L}[(t^2-3)^2] = \mathcal{L}[t^4]-6\mathcal{L}[t^2]+9\mathcal{L}[1]= $


$ = \frac{4!}{s^5} - 6\frac{2!}{s^3} + \frac{9}{s} $


p. 226: #4:

$ \ sin^2 4 t = \frac {1 - cos2(4t)}{2} $

So the Laplace Transform can be gotten from the table.

p. 226: #23.

$ \mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt=F(s). $

So

$ \mathcal{L}[f(ct)]=\int_0^\infty e^{-st}f(ct)\ dt. $

Make the change of variables

$ \tau=ct $

to get

$ \mathcal{L}[f(ct)]=\int_{\tau=0}^\infty e^{-(s/c)\tau}f(\tau)\ (1/c) d\tau= $

$ \frac{1}{c}F(s/c). $

Even solutions (added by Adam M on Oct 5, please check results):

p. 226: 10.

$ \mathcal{L}[-8sin(0.2t)]=\frac{-1.6}{s^2+0.04} $

p. 226: 12.

$ \mathcal{L}[(t+1)^3]=\frac{6}{s^4}+\frac{6}{s^3}+\frac{3}{s^2}+\frac{1}{s} $

p. 226: 30.

$ \mathcal{L}^{-1}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t) $

(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get

$ \mathcal{L}^{-1}=-e^{-4t}+3e^{4t} $

AJ, I was able to get your answer and verified that it is correct. However, I am unable to see why my initial answer was wrong. I seperated as follows:

$ \mathcal{L}^{-1}[2*\frac{s}{s^2-4^2}+4*\frac{4}{s^2-4^2}] $

then used (8) and (9) from Table 6.1. Thoughts?

They are actually the exact same thing, so both answers should be correct. This can be proven using:

cosh(bx) = (1/2)*(e^(bx) + e^(-bx))

sinh(bx) = (1/2)*(e^(bx) - e^(-bx))

--Idougla 23:40, 7 October 2010 (UTC)

Thank you!

P. 226: 39. Can somebody post a solution for 39? I must be missing something on this one.

Re-write as:

$ \mathcal{L}^{-1}[\frac{1}{s^2+5}-\frac{1}{s+5}]=\mathcal{L}^{-1}[\frac{1}{\sqrt{5}}*\frac{\sqrt{5}}{s^2+\sqrt{5}^2}-\frac{1}{s-(-5)}] $


Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang