(11 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
[[Category:Problem_solving]]
 +
[[Category:ECE438]]
 +
[[Category:digital signal processing]]
 +
 
== Week7 Quiz Pool ==
 
== Week7 Quiz Pool ==
  
Q1:
+
Q1: As part of the first stage in a radix 2 FFT, a sequence x[n] of length N = 8 is decomposed
 +
into two sequences of length 4 as
  
 +
<math>f_0[n] = x[2n]\text{ , n = 0, 1, 2, 3}</math>
  
[[W7Q1Sol|Solution]]
+
<math>f_1[n] = x[2n + 1]\text{ , n = 0, 1, 2, 3}</math>
----------------------------------
+
  
Q2:
+
The 4-pt. DFT of each of these two sequences is <math>F_0[k]\text{ and }F_1[k]</math> respectively.
  
 +
The specific values of <math>F_0[k]\text{ and }F_1[k]</math>, k = 0, 1, 2, 3, obtained from the length N = 8 sequence
 +
in question are listed in the Table below.
 +
 +
[[Image:W7q1tableFFT.jpg]]
 +
 +
 +
From the values of <math>F_0[k] \text{ and }F_1[k]</math>, k = 0, 1, 2, 3, and the values of
 +
 +
<math>W_8^k = e^{\frac{-j2\pi k}{8}}, k = 0, 1, 2, 3</math>
 +
 +
provided in the Table, determine the numerical values of the actual N = 8-pt. DFT of x[n] denoted <math>X_8[k]</math> for k = 0, 1, 2, 3, 4, 5, 6, 7.
 +
 +
Answer [[W7Q1Sol|Here]].
 +
 +
----
 +
 +
Q2: The underlying length N = 8 sequence of x[n] in Q1 may be expressed as
 +
 +
<math>x[n] = e^{j2\pi k_1n/8} + e^{j2\pi k_2n/8}, n = 0,1,2 ..., 7  </math>
 +
 +
Given the values of <math>X_8[k]</math> for k = 0, 1, ..., 7 determined in Q1, determine the numerical values of <math>k_1\text{ and }k_2</math>.
 +
 +
Answer [[W7Q2Sol|Here]].
  
[[W7Q2Sol|Solution]]
 
 
----------------------------------
 
----------------------------------
  
 
Q3:
 
Q3:
 +
Let <math>X_N[k],k=0,...,N-1</math> denote the N point Discrete Fourier Transform (DFT) of the signal x[n],n=0,...,N-1.
  
 +
For each case below derive an expression for the DFT  <math>Y_M[k],k=0,...,M-1</math> of the signal y[n],n=0,...,M-1 in terms of <math>X_N[k],k=0,...,N-1</math>
  
[[W7Q3Sol|Solution]]
+
a. <math>y[n]=e^{j\frac{2\pi}{N}n}x[n],\;\;n=0,...,N-1</math>
----------------------------------
+
  
Q4:
+
b. <math>y[n]=\left\{\begin{array}{ll}x[N-1], &  n=0,\\ x[n-1], & n=1,...,N-1\end{array} \right.</math>
  
 +
c. <math>y[n]=\left\{\begin{array}{ll}x[n/2], &  n \text{ is even},\\ 0, & n \text{ is odd},\end{array} \right. n=0,...,2N-1</math>
  
[[W7Q4Sol|Solution]]
+
d. <math>y[n]=x[2n],\;\;n=0,...,N/2-1</math> Assume that N is even.
 +
 
 +
 
 +
[[W7Q3Sol|Solution]]
 
----------------------------------
 
----------------------------------
  
Q5:
+
Q4:  
 +
Consider complex signal  <math>x[n]=\left\{\begin{array}{ll}e^{j\omega _0 n} &  0\le n\le N-1,\\ 0, & \text{otherwise},\end{array} \right. </math>
  
 +
a. Compute <math>X(e^{j\omega})</math> the Fourier Transform of x[n].
  
[[W7Q5Sol|Solution]]
+
b. Compute X[k], the N points DFT of x[n].
----------------------------------
+
  
Q6:
+
c. For <math>\omega _0=2\pi k_0 /N, </math> where <math>k_0</math> is integer, compute DFT of x[n].
  
  
[[W7Q6Sol|Solution]]
+
[[W7Q4Sol|Solution]]
 
----------------------------------
 
----------------------------------
 +
 
[[ECE438_Lab_Fall_2010|Back to Lab wiki]]
 
[[ECE438_Lab_Fall_2010|Back to Lab wiki]]

Latest revision as of 09:41, 11 November 2011


Week7 Quiz Pool

Q1: As part of the first stage in a radix 2 FFT, a sequence x[n] of length N = 8 is decomposed into two sequences of length 4 as

$ f_0[n] = x[2n]\text{ , n = 0, 1, 2, 3} $

$ f_1[n] = x[2n + 1]\text{ , n = 0, 1, 2, 3} $

The 4-pt. DFT of each of these two sequences is $ F_0[k]\text{ and }F_1[k] $ respectively.

The specific values of $ F_0[k]\text{ and }F_1[k] $, k = 0, 1, 2, 3, obtained from the length N = 8 sequence in question are listed in the Table below.

W7q1tableFFT.jpg


From the values of $ F_0[k] \text{ and }F_1[k] $, k = 0, 1, 2, 3, and the values of

$ W_8^k = e^{\frac{-j2\pi k}{8}}, k = 0, 1, 2, 3 $

provided in the Table, determine the numerical values of the actual N = 8-pt. DFT of x[n] denoted $ X_8[k] $ for k = 0, 1, 2, 3, 4, 5, 6, 7.

Answer Here.


Q2: The underlying length N = 8 sequence of x[n] in Q1 may be expressed as

$ x[n] = e^{j2\pi k_1n/8} + e^{j2\pi k_2n/8}, n = 0,1,2 ..., 7 $

Given the values of $ X_8[k] $ for k = 0, 1, ..., 7 determined in Q1, determine the numerical values of $ k_1\text{ and }k_2 $.

Answer Here.


Q3: Let $ X_N[k],k=0,...,N-1 $ denote the N point Discrete Fourier Transform (DFT) of the signal x[n],n=0,...,N-1.

For each case below derive an expression for the DFT $ Y_M[k],k=0,...,M-1 $ of the signal y[n],n=0,...,M-1 in terms of $ X_N[k],k=0,...,N-1 $

a. $ y[n]=e^{j\frac{2\pi}{N}n}x[n],\;\;n=0,...,N-1 $

b. $ y[n]=\left\{\begin{array}{ll}x[N-1], & n=0,\\ x[n-1], & n=1,...,N-1\end{array} \right. $

c. $ y[n]=\left\{\begin{array}{ll}x[n/2], & n \text{ is even},\\ 0, & n \text{ is odd},\end{array} \right. n=0,...,2N-1 $

d. $ y[n]=x[2n],\;\;n=0,...,N/2-1 $ Assume that N is even.


Solution


Q4: Consider complex signal $ x[n]=\left\{\begin{array}{ll}e^{j\omega _0 n} & 0\le n\le N-1,\\ 0, & \text{otherwise},\end{array} \right. $

a. Compute $ X(e^{j\omega}) $ the Fourier Transform of x[n].

b. Compute X[k], the N points DFT of x[n].

c. For $ \omega _0=2\pi k_0 /N, $ where $ k_0 $ is integer, compute DFT of x[n].


Solution


Back to Lab wiki

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009