m
 
(8 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Work in progress for a formula sheet?
+
Work in progress for a formula sheet add things on :P?
 +
 
 
*Fourier series of a continuous-time signal x(t) periodic with period T
 
*Fourier series of a continuous-time signal x(t) periodic with period T
 
*Fourier series coefficients of a continuous-time signal x(t) periodic with period T
 
*Fourier series coefficients of a continuous-time signal x(t) periodic with period T
Line 6: Line 7:
  
 
:<math>CTFT</math><math>\ x(t) = \int_{-\infty}^{\infty} \chi(f)\ e^{j 2 \pi f t}\,df \;\;\;\;\;\;\;\;\;\;\;\;\;\ \chi(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt</math>  
 
:<math>CTFT</math><math>\ x(t) = \int_{-\infty}^{\infty} \chi(f)\ e^{j 2 \pi f t}\,df \;\;\;\;\;\;\;\;\;\;\;\;\;\ \chi(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt</math>  
 +
 +
:<math>DFT</math> <math>\ X[k]=\sum_{k=0}^{N-1} x[n] e^{-j\frac{2 \pi k n}{N}}\;\;\;\;\;\;\; </math>  <math>IDFT</math> <math>\ x[n]=\frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{j\frac{2 \pi k n}{N}}</math>
 +
  
  
Line 14: Line 18:
 
:<math> rep_T [x(t)] \iff \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] \;\;\;\;\;\;\;\;\;\; comb_T [x(t)] \iff \frac{1}{T}rep_\frac{1}{T} [ \mathrm{X}(f)] </math>
 
:<math> rep_T [x(t)] \iff \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] \;\;\;\;\;\;\;\;\;\; comb_T [x(t)] \iff \frac{1}{T}rep_\frac{1}{T} [ \mathrm{X}(f)] </math>
  
<math>\displaystyle\delta(\alpha f)=\frac{1}{\alpha}\delta(f)\;\;\;\;\;\;for\;\;\alpha>0 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;sinc(\theta)=sin(\pi\theta)/(\pi\theta) </math>
+
<math>\displaystyle\delta(\alpha f)= \frac{1}{\alpha}\delta(f)\;\;\;\;\;\;for\;\;\alpha>0 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;sinc(\theta)= \frac{sin(\pi\theta)}{\pi\theta} </math>
 +
 
 +
<math> \displaystyle e^{j\pi}=-1 \;\;\;\;\;\;\; \cos(\theta) = \frac{(e^{j\theta}+e^{-j\theta})}{2}\;\;\;\;\;\;\;\;\;\;\;\; sin(\theta) = \frac{(e^{j\theta}-e^{-j\theta})}{2j}</math>
 +
 
 +
<math> \mathcal{F}(\frac{rect(  (t-\frac{T}{2})}{T})) \Rightarrow  Tsinc(Tf)(e^{-j2 \pi f \frac{T}{2} }) </math>
 +
 
 +
 
 +
== Z-transform ==
 +
 
 +
 
 +
:<math>Z-transform </math> <math> Z(x[n]) =\sum_{n=-\infty}^\infty x[n] z^{-n}</math>
  
<math> \displaystyle e^{j\pi}=-1 \;\;\;\;\;\;\; \cos(t\theta) = (e^{j\theta}+e^{-j\theta})/2 \;\;\;\;\;\;\;\;\;\;\;\; sin(t\theta) = (e^{j\theta}-e^{-j\theta})/(2j) </math>
+
[[Midterm1_discussion_ECE438F10|Back to Exam 1 Discussion]]

Latest revision as of 16:13, 30 September 2010

Work in progress for a formula sheet add things on :P?

  • Fourier series of a continuous-time signal x(t) periodic with period T
  • Fourier series coefficients of a continuous-time signal x(t) periodic with period T
$ CTFS $ $ x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt}\;\;\;\;\;\;\;\;\;\;\;\;\;\;a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt $
$ CTFT $$ \ x(t) = \int_{-\infty}^{\infty} \chi(f)\ e^{j 2 \pi f t}\,df \;\;\;\;\;\;\;\;\;\;\;\;\;\ \chi(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt $
$ DFT $ $ \ X[k]=\sum_{k=0}^{N-1} x[n] e^{-j\frac{2 \pi k n}{N}}\;\;\;\;\;\;\; $ $ IDFT $ $ \ x[n]=\frac{1}{N} \sum_{n=0}^{N-1} X[k] e^{j\frac{2 \pi k n}{N}} $



$ rep_T [x(t)] = x(t)* \sum_{k=-\infty}^{\infty}\delta(t-kT) \;\;\;\;\;\;\;\;\;comb_T[x(t)] = x(t) . \sum_{k=-\infty}^{\infty}\delta(t-kT) $
$ rep_T [x(t)] \iff \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] \;\;\;\;\;\;\;\;\;\; comb_T [x(t)] \iff \frac{1}{T}rep_\frac{1}{T} [ \mathrm{X}(f)] $

$ \displaystyle\delta(\alpha f)= \frac{1}{\alpha}\delta(f)\;\;\;\;\;\;for\;\;\alpha>0 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;sinc(\theta)= \frac{sin(\pi\theta)}{\pi\theta} $

$ \displaystyle e^{j\pi}=-1 \;\;\;\;\;\;\; \cos(\theta) = \frac{(e^{j\theta}+e^{-j\theta})}{2}\;\;\;\;\;\;\;\;\;\;\;\; sin(\theta) = \frac{(e^{j\theta}-e^{-j\theta})}{2j} $

$ \mathcal{F}(\frac{rect( (t-\frac{T}{2})}{T})) \Rightarrow Tsinc(Tf)(e^{-j2 \pi f \frac{T}{2} }) $


Z-transform

$ Z-transform $ $ Z(x[n]) =\sum_{n=-\infty}^\infty x[n] z^{-n} $

Back to Exam 1 Discussion

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett