m
m
 
(53 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
*Fourier series coefficients of a continuous-time signal x(t) periodic with period T
 
*Fourier series coefficients of a continuous-time signal x(t) periodic with period T
  
:<math>DTFS \nbsp </math> <math>  x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt}</math>  <math>a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt</math>
+
:<math>CTFS </math> <math>  x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt}\;\;\;\;\;\;\;\;\;\;\;\;\;\;a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt</math>
  
 +
:<math>CTFT</math><math>\ x(t) = \int_{-\infty}^{\infty} \chi(f)\ e^{j 2 \pi f t}\,df \;\;\;\;\;\;\;\;\;\;\;\;\;\ \chi(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt</math>
 +
 +
 +
 +
 +
:<math> rep_T [x(t)] = x(t)* \sum_{k=-\infty}^{\infty}\delta(t-kT) \;\;\;\;\;\;\;\;\;comb_T[x(t)] = x(t) . \sum_{k=-\infty}^{\infty}\delta(t-kT) </math>
 +
 +
:<math> rep_T [x(t)] \iff \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] \;\;\;\;\;\;\;\;\;\; comb_T [x(t)] \iff \frac{1}{T}rep_\frac{1}{T} [ \mathrm{X}(f)] </math>
 +
 +
<math>\displaystyle\delta(\alpha f)= \frac{1}{\alpha}\delta(f)\;\;\;\;\;\;for\;\;\alpha>0 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;sinc(\theta)= \frac{sin(\pi\theta)}{\pi\theta} </math>
 +
 +
<math> \displaystyle e^{j\pi}=-1 \;\;\;\;\;\;\; \cos(t\theta) = \frac{(e^{j\theta}+e^{-j\theta})}{2}\;\;\;\;\;\;\;\;\;\;\;\; sin(t\theta) = \frac{(e^{j\theta}-e^{-j\theta})}{2j}</math>
 +
 +
<math> \mathcal{F}(\frac{rect(  (t-\frac{T}{2})}{T})) \Rightarrow  Tsinc(Tf)(e^{-j2 \pi f \frac{T}{2} }) </math>
  
:<math>\ F(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt                  </math> <math>\ f(t) = \int_{-\infty}^{\infty} F(f)\ e^{j 2 \pi f t}\,df </math>
 
  
 
[[ 2010 Fall ECE 438 Boutin/ECE438Mid1FormulaSheet Work|Back to 2010 Fall ECE 438 Boutin/ECE438Mid1FormulaSheet Work]]
 
[[ 2010 Fall ECE 438 Boutin/ECE438Mid1FormulaSheet Work|Back to 2010 Fall ECE 438 Boutin/ECE438Mid1FormulaSheet Work]]

Latest revision as of 05:50, 30 September 2010

2010_Fall_ECE_438_Boutin/ECE438Mid1FormulaSheet_Work_wrk

  • Fourier series of a continuous-time signal x(t) periodic with period T
  • Fourier series coefficients of a continuous-time signal x(t) periodic with period T
$ CTFS $ $ x(t)=\sum_{n=-\infty}^\infty a_n e^{j \frac{2\pi}{T}nt}\;\;\;\;\;\;\;\;\;\;\;\;\;\;a_n=\frac{1}{T} \int_{0}^T x(t) e^{-j \frac{2\pi}{T}nt}dt $
$ CTFT $$ \ x(t) = \int_{-\infty}^{\infty} \chi(f)\ e^{j 2 \pi f t}\,df \;\;\;\;\;\;\;\;\;\;\;\;\;\ \chi(f) = \int_{-\infty}^{\infty} x(t)\ e^{- j 2 \pi f t}\,dt $



$ rep_T [x(t)] = x(t)* \sum_{k=-\infty}^{\infty}\delta(t-kT) \;\;\;\;\;\;\;\;\;comb_T[x(t)] = x(t) . \sum_{k=-\infty}^{\infty}\delta(t-kT) $
$ rep_T [x(t)] \iff \frac{1}{T}comb_\frac{1}{T} [ \mathrm{X}(f)] \;\;\;\;\;\;\;\;\;\; comb_T [x(t)] \iff \frac{1}{T}rep_\frac{1}{T} [ \mathrm{X}(f)] $

$ \displaystyle\delta(\alpha f)= \frac{1}{\alpha}\delta(f)\;\;\;\;\;\;for\;\;\alpha>0 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;sinc(\theta)= \frac{sin(\pi\theta)}{\pi\theta} $

$ \displaystyle e^{j\pi}=-1 \;\;\;\;\;\;\; \cos(t\theta) = \frac{(e^{j\theta}+e^{-j\theta})}{2}\;\;\;\;\;\;\;\;\;\;\;\; sin(t\theta) = \frac{(e^{j\theta}-e^{-j\theta})}{2j} $

$ \mathcal{F}(\frac{rect( (t-\frac{T}{2})}{T})) \Rightarrow Tsinc(Tf)(e^{-j2 \pi f \frac{T}{2} }) $


Back to 2010 Fall ECE 438 Boutin/ECE438Mid1FormulaSheet Work

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett