(New page: Category:2010 Fall ECE 438 Boutin == Solution to Q4 of Week 5 Quiz Pool == ---- From the first question, we knew that <math> -a^{n}u[-n-1] = \mathcal{Z}^{-1}\bigg\{\frac{1}{1-az^{-...) |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
[[Category:2010 Fall ECE 438 Boutin]] | [[Category:2010 Fall ECE 438 Boutin]] | ||
− | + | ---- | |
== Solution to Q4 of Week 5 Quiz Pool == | == Solution to Q4 of Week 5 Quiz Pool == | ||
---- | ---- | ||
− | From the | + | From the definition, we know that |
+ | |||
+ | <math> H(e^{jw}) = \frac{e^{jw}-j}{e^{jw}-2} \,\!</math> | ||
+ | |||
+ | <math> \text{For } w_1, \; |H(e^{j w_1})| = \bigg|\frac{e^{j\frac{\pi}{2}}-j}{e^{j\frac{\pi}{2}}-2}\bigg| = 0, \;\; \text{ since } e^{j\frac{\pi}{2}}=j. \,\!</math> | ||
− | <math> | + | <math> \text{For } w_2, \; \text{ since } e^{-j\frac{\pi}{2}}=-j, \; H(e^{j w_2}) = \frac{e^{-j\frac{\pi}{2}}-j}{e^{-j\frac{\pi}{2}}-2} = \frac{-j-j}{-j-2} = \frac{2j}{2+j}. \,\!</math> |
− | + | Therefore, | |
− | <math> | + | <math> |H(e^{j w_2})| = \bigg|\frac{2j}{2+j}\bigg| = \frac{\sqrt{0^2+2^2}}{\sqrt{2^2+1^2}} = \frac{2}{\sqrt{5}}. \,\!</math> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
---- | ---- | ||
Back to [[ECE438_Week5_Quiz|Lab Week 5 Quiz Pool]] | Back to [[ECE438_Week5_Quiz|Lab Week 5 Quiz Pool]] |
Latest revision as of 15:42, 19 September 2010
Solution to Q4 of Week 5 Quiz Pool
From the definition, we know that
$ H(e^{jw}) = \frac{e^{jw}-j}{e^{jw}-2} \,\! $
$ \text{For } w_1, \; |H(e^{j w_1})| = \bigg|\frac{e^{j\frac{\pi}{2}}-j}{e^{j\frac{\pi}{2}}-2}\bigg| = 0, \;\; \text{ since } e^{j\frac{\pi}{2}}=j. \,\! $
$ \text{For } w_2, \; \text{ since } e^{-j\frac{\pi}{2}}=-j, \; H(e^{j w_2}) = \frac{e^{-j\frac{\pi}{2}}-j}{e^{-j\frac{\pi}{2}}-2} = \frac{-j-j}{-j-2} = \frac{2j}{2+j}. \,\! $
Therefore,
$ |H(e^{j w_2})| = \bigg|\frac{2j}{2+j}\bigg| = \frac{\sqrt{0^2+2^2}}{\sqrt{2^2+1^2}} = \frac{2}{\sqrt{5}}. \,\! $
Back to Lab Week 5 Quiz Pool
Back to ECE 438 Fall 2010 Lab Wiki Page
Back to ECE 438 Fall 2010