(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | =How to obtain the CT Fourier transform formula in terms of f in hertz (from the formula in terms of <math>\omega</math> = | + | =How to obtain the CT Fourier transform formula in terms of f in hertz (from the formula in terms of <math>\omega</math>) = |
Recall: | Recall: | ||
+ | |||
<math> \mathcal{X}(\omega )=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math> | <math> \mathcal{X}(\omega )=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math> | ||
Line 7: | Line 8: | ||
To obtain X(f), use the substitution | To obtain X(f), use the substitution | ||
− | <math>\ | + | <math>\omega= 2 \pi f </math>. |
+ | |||
+ | More specifically | ||
<math> | <math> | ||
Line 17: | Line 20: | ||
---- | ---- | ||
− | [[ | + | [[ECE438_HW1_Solution|Back to Table]] |
Latest revision as of 09:57, 15 September 2010
How to obtain the CT Fourier transform formula in terms of f in hertz (from the formula in terms of $ \omega $)
Recall:
$ \mathcal{X}(\omega )=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt $
To obtain X(f), use the substitution
$ \omega= 2 \pi f $.
More specifically
$ \begin{align} X(f) &=\mathcal{X}(2\pi f)\\ &=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt \end{align} $