(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{|
+
=How to obtain the CT Fourier transform formula in terms of f in hertz (from the formula in terms of <math>\omega</math>) =
|-
+
 
| align="right" style="padding-right: 1em;" | CT Fourier Transform
+
Recall:
|-
+
 
| <math> X(f)=\mathcal{X}(2\pi f)=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math>  
+
<math> \mathcal{X}(\omega )=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt</math>
|
+
 
|}
+
 
 +
To obtain X(f), use the substitution
 +
 
 +
<math>\omega= 2 \pi f </math>.
 +
 
 +
More specifically
 +
 
 +
<math>
 +
\begin{align}
 +
X(f) &=\mathcal{X}(2\pi f)\\
 +
&=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt
 +
\end{align}
 +
</math>  
 +
 +
----
 +
[[ECE438_HW1_Solution|Back to Table]]

Latest revision as of 09:57, 15 September 2010

How to obtain the CT Fourier transform formula in terms of f in hertz (from the formula in terms of $ \omega $)

Recall:

$ \mathcal{X}(\omega )=\mathcal{F}(x(t))=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt $


To obtain X(f), use the substitution

$ \omega= 2 \pi f $.

More specifically

$ \begin{align} X(f) &=\mathcal{X}(2\pi f)\\ &=\int_{-\infty}^{\infty} x(t) e^{-i2\pi ft} dt \end{align} $


Back to Table

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood