(New page: ==Official Statements of the Sampling Theorem== == Sampling Theorem as per Oppenheim Willsky == Let x(t) be a BAND-LIMITED signal with X(w) = 0 for |w| > w_m. Then x(t) is uniquely deter...)
 
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
==Official Statements of the Sampling Theorem==
+
[[Category: ECE]]
 +
[[Category: ECE 301]]
 +
[[Category: Summer]]
 +
[[Category: 2008]]
 +
[[Category: asan]]
 
== Sampling Theorem as per Oppenheim Willsky ==
 
== Sampling Theorem as per Oppenheim Willsky ==
  
Line 14: Line 18:
 
Second Edition
 
Second Edition
 
Alan V. Oppenheim, Alan S. Willsky, with S. Hamid Nawab
 
Alan V. Oppenheim, Alan S. Willsky, with S. Hamid Nawab
 +
----
 +
[[Sampling_Theorem|Back to Sampling Theorem]]

Latest revision as of 12:07, 8 November 2010

Sampling Theorem as per Oppenheim Willsky

Let x(t) be a BAND-LIMITED signal with X(w) = 0 for |w| > w_m. Then x(t) is uniquely determined by its samples x(nT), n=-2,-1,0,1,2... IF w_s > 2w_m, where w_x = 2*pi/T

Given these samples, we can reconstruct x(t) through an impulse train where amplitudes are successive sample values.

THIS STATEMENT IS EXTRACTED FROM THE TEXTBOOK.

Signals & Systems Second Edition Alan V. Oppenheim, Alan S. Willsky, with S. Hamid Nawab


Back to Sampling Theorem

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010